Life Sci. 2022 Aug 13. pii: S0024-3205(22)00584-7. [Epub ahead of print]
120884
AIMS: The potential of all-trans retinoic acid (ATRA) in regulating some microRNAs (miRNAs) involved in multiple cancer-related pathways, including resistance to chemotherapeutics, may be a valuable idea for overcoming the CDDP resistance of GC cells.MAIN METHODS: Treatment of gastric AGS and MKN-45 cells with CDDP enriched the CDDP surviving cells (CDDP-SCs). The abilities of chemoresistance to CDDP drug, migration, either apoptosis or cell cycle distribution, spheroid body formation and changes at miRNA and protein levels were evaluated in vitro by MTT assay, colony formation assay, flow cytometry, tumor spheres culture, qRT-PCR and western blot assay in CDDP-SCs and ATRA-treated CDDP-SCs cells, respectively.
KEY FINDINGS: CDDP-based chemotherapy significantly reduced microRNA-30a (miR-30a) levels in GC cells. We also observed elevated autophagy activity in cancer cells that possess stem cell-like properties with overexpressed specific stem cell markers. Our extended study suggested that the reduction of miR-30a by CDDP treatment, is the possible underlying mechanism of enhanced autophagic activity, as demonstrated by enhancing autophagy-related protein beclin 1 and LC3-II/LC-I ratio. The addition of ATRA in the culture medium of GC cells increased the expression of miR-30a, and disturbed characteristic CSC-like properties. Additional studies revealed that the increased expression of miR-30a declined the expression level of its target gene, beclin 1, and beclin 1-mediated autophagy. This leads to promoted CDDP-induced GC cell apoptosis and G2/M cell cycle arrest.
SIGNIFICANCE: Overall, miR-30a/autophagy signaling has a critical role in regulating the chemoresistance of GC cells that ATRA could modulate.
Keywords: All-trans retinoic acid; Autophagy; CDDP; CSC-like; MiR-30a