bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2022–08–07
seven papers selected by
Su Hyun Lee, Seoul National University



  1. Autophagy. 2022 Aug 01. 1-19
      Glioblastoma multiforme (GBM) is the most common brain malignancy insensitive to radiotherapy (RT). Although macroautophagy/autophagy was reported to be a fundamental factor prolonging the survival of tumors under radiotherapeutic stress, the autophagic biomarkers coordinated to radioresistance of GBM are still lacking in clinical practice. Here we established radioresistant GBM cells and identified their protein profiles using tandem mass tag (TMT) quantitative proteomic analysis. It was found that SDC1 and TGM2 proteins were overexpressed in radioresistant GBM cells and tissues and they contributed to the poor prognosis of RT. Knocking down SDC1 and TGM2 inhibited the fusion of autophagosomes with lysosomes and thus enhanced the radiosensitivity of GBM cells. After irradiation, TGM2 bound with SDC1 and transported it from the cell membrane to lysosomes, and then bound to LC3 through its two LC3-interacting regions (LIRs), coordinating the encounter between autophagosomes and lysosomes, which should be a prerequisite for lysosomal EPG5 to recognize LC3 and subsequently stabilize the STX17-SNAP29-VAMP8 QabcR SNARE complex assembly. Moreover, when combined with RT, cystamine dihydrochloride (a TGM2 inhibitor) extended the lifespan of GBM-bearing mice. Overall, our findings demonstrated the EPG5 tethering mode with SDC1 and TGM2 during the fusion of autophagosomes with lysosomes, providing new insights into the molecular mechanism and therapeutic target underlying radioresistant GBM.Abbreviations: BafA1: bafilomycin A1; CQ: chloroquine; Cys-D: cystamine dihydrochloride; EPG5: ectopic P-granules 5 autophagy tethering factor; GBM: glioblastoma multiforme; GFP: green fluorescent protein; LAMP2: lysosomal associated membrane protein 2; LIRs: LC3-interacting regions; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NC: negative control; RFP: red fluorescent protein; RT: radiotherapy; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TMT: tandem mass tag; VAMP8: vesicle associated membrane protein 8; WT: wild type.
    Keywords:  Autophagosome maturation; EPG5; SDC1; TGM2; glioblastoma; radioresistance biomarkers
    DOI:  https://doi.org/10.1080/15548627.2022.2105562
  2. Autophagy. 2022 Aug 03. 1-17
      Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat due to the lack of effective targeted therapies. Transmembrane (TMEM) proteins represent attractive drug targets for cancer therapy, but biological functions of most members of the TMEM family remain unknown. Here, we report for the first time that TMEM63A (transmembrane protein 63A), a poorly characterized TMEM protein with unknown functions in human cancer, functions as a novel oncogene to promote TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth and lung metastasis in vivo. Mechanistic investigations revealed that TMEM63A localizes in endoplasmic reticulum (ER) and lysosome membranes, and interacts with VCP (valosin-containing protein) and its cofactor DERL1 (derlin 1). Furthermore, TMEM63A undergoes autophagy receptor TOLLIP-mediated autophagic degradation and is stabilized by VCP through blocking its lysosomal degradation. Strikingly, TMEM63A in turn stabilizes oncoprotein DERL1 through preventing TOLLIP-mediated autophagic degradation. Notably, pharmacological inhibition of VCP by CB-5083 or knockdown of DERL1 partially abolishes the oncogenic effects of TMEM63A on TNBC progression both in vitro and in vivo. Collectively, these findings uncover a previously unknown functional and mechanistic role for TMEM63A in TNBC progression and provide a new clue for targeting TMEM63A-driven TNBC tumors by using a VCP inhibitor.Abbreviations: ATG16L1, autophagy related 16 like 1; ATG5, autophagy related 5; ATP5F1B/ATP5B, ATP synthase F1 subunit beta; Baf-A1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CANX, calnexin; DERL1, derlin 1; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation; HSPA8, heat shock protein family A (Hsp70) member 8; IP, immunoprecipitation; LAMP2A, lysosomal associated membrane protein 2; NBR1, NBR1 autophagy cargo receptor; OPTN, optineurin; RT-qPCR, reverse transcription-quantitative PCR; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TMEM63A, transmembrane protein 63A; TNBC, triple-negative breast cancer; TOLLIP, toll interacting protein; VCP, valosin containing protein.
    Keywords:  Macroautophagic degradation; proteostasis; selective autophagy receptor; transmembrane protein; triple-negative breast cancer
    DOI:  https://doi.org/10.1080/15548627.2022.2103992
  3. Front Oncol. 2022 ;12 955718
      Regulation of ubiquitination is associated with multiple processes of tumorigenesis and development, including regulation of the tumor immune microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin chains from substrates, thereby stabilizing target proteins and altering and remodeling biological processes. During tumorigenesis, deubiquitination-altered biological processes are closely related to tumor metabolism, stemness, and the immune microenvironment. Recently, tumor microenvironment (TME) modulation strategies have attracted considerable attention in cancer immunotherapy. Targeting immunosuppressive mechanisms in the TME has revolutionized cancer therapy. Prostate cancer (PC) is one of the most common cancers and the second most common cause of cancer-related death in men worldwide. While immune checkpoint inhibition has produced meaningful therapeutic effects in many cancer types, clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC patients. TME affects PC progression and also enables tumor cell immune evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an increasing number of studies have demonstrated that deubiquitination in PC immune microenvironment may modulate the host immune system's response to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific proteases (USPs) play an important role in regulating T cell development and function. According to current studies, USPs exhibit a high expression signature in PC and may promote tumorigenesis. Elevated expression of USPs often indicates poor tumor prognosis, suggesting that USPs are expected to develop as the markers of tumor prognosis and even potential drug targets for anti-tumor therapy. Herein, we first summarized recent advances of USPs in PC and focused on the relationship between USPs and immunity. Additionally, we clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we reviewed the major achievement of targeting USPs in cancers.
    Keywords:  USPs; deubiquitination; immune evasion; prostate cancer; tumor microenvironment; ubiquitylation
    DOI:  https://doi.org/10.3389/fonc.2022.955718
  4. Natl J Maxillofac Surg. 2022 Jan-Apr;13(1):13(1): 11-19
      Mitophagy is a progressive process that selectively targets weakened, old and damaged mitochondria, by an autophagic pathway, causing its destruction. Mitophagy maintains normal cellular physiology and tissue development, thereby controlling the cohesiveness of the mitochondrial pool. The mechanisms of mitophagy, tumorogenesis, and cell death are usually interrelated with each other and could be initiated by definite stressful conditions like hypoxia and nutrient starvation, which leads to the overall reduction in mitochondrial mass. This impedes the production of reactive oxygen species, and conserves nutrition, leading to cell survival in such extreme conditions. The inability to harmonize and regulate mitochondrial outcome in response to oncogenic stress can either stimulate or suppress tumorogenesis. Therefore, the relationship between mitophagy, tumorogenesis, and cell death plays an important role in the identification of potential targets of cell death and selective wiping out of cancer cells. This review portrays the mechanism of mitophagy, along with its role in cancers especially on oral cancers, and its importance in cancer therapeutics.
    Keywords:  Autophagy; cell death; mitophagy; oral cancers; treatment; tumorogenesis
    DOI:  https://doi.org/10.4103/njms.NJMS_123_20
  5. Nat Commun. 2022 Aug 01. 13(1): 4462
      Defects in cellular proteostasis and mitochondrial function drive many aspects of infertility, cancer, and other age-related diseases. All of these conditions rely on quiescent cells, such as oocytes and adult stem cells, that reduce their activity and remain dormant as part of their roles in tissue homeostasis, reproduction, and even cancer recurrence. Using a multi-organism approach, we show that dynamic shifts in the ubiquitin proteasome system drive mitochondrial remodeling during cellular quiescence. In contrast to the commonly held view that the ubiquitin-proteasome system (UPS) is primarily regulated by substrate ubiquitination, we find that increasing proteasome number and their recruitment to mitochondria support mitochondrial respiratory quiescence (MRQ). GSK3 triggers proteasome recruitment to the mitochondria by phosphorylating outer membrane proteins, such as VDAC, and suppressing mitochondrial fatty acid oxidation. This work defines a process that couples dynamic regulation of UPS activity to coordinated shifts in mitochondrial metabolism in fungi, Drosophila, and mammals during quiescence.
    DOI:  https://doi.org/10.1038/s41467-022-32206-2
  6. J Biol Chem. 2022 Aug 01. pii: S0021-9258(22)00756-6. [Epub ahead of print] 102314
      The zinc finger ubiquitin ligase RNF6 has been proposed as a potential therapeutic target in several cancers, but understanding its molecular mechanism of degradation has been elusive. In the present study, we find that RNF6 is degraded via auto-ubiquitination in a manner dependent on its Really Interesting New Gene (RING) domain. We determine that when the RING domain is deleted (ΔRING) or the core cysteine residues in the zinc finger are mutated (C632S/C635S), the wild-type protein, but not the ΔRING or mutant RNF6 protein, undergoes polyubiquitination. We also identify USP7 as a deubiquitinase of RNF6 by tandem mass spectrometry. We show that USP7 interacts with RNF6 and abolishes its K48-linked polyubiquitination, thereby preventing its degradation. In contrast, we found a USP7-specific inhibitor promotes RNF6 polyubiquitination, degradation, and cell death. Furthermore, we demonstrate anti-leukemic drug Nilotinib and anti-myeloma drug Panobinostat (LBH589) induce RNF6 K48-linked polyubiquitination and degradation in both multiple myeloma (MM) and leukemia cells. In agreement with our hypothesis on the mode of RNF6 degradation, we show these drugs promote RNF6 auto-ubiquitination in an in vitro ubiquitination system without other E3 ligases. Consistently, re-expression of RNF6 ablates drug-induced MM and leukemia cell apoptosis. Therefore, our results reveal that RNF6 is a RING E3 ligase that undergoes auto-ubiquitination, which could be abolished by USP7 and induced by anti-cancer drugs. We propose chemical induction of RNF6 auto-ubiquitination and degradation could be a novel strategy for the treatment of hematological malignancies including MM and leukemia.
    Keywords:  RNF6; USP7; auto-ubiquitination; leukemia; myeloma
    DOI:  https://doi.org/10.1016/j.jbc.2022.102314
  7. Front Endocrinol (Lausanne). 2022 ;13 926622
      The discovery and application of small molecules is one of the practical strategies of safe osteogenic drugs. The small molecule CHIR99021 (C91) is a highly specific, safe, and most effective GSK-3β Inhibitor. This study found that it efficiently activates the canonical Wnt signaling of bone marrow stromal cell ST2 and promotes osteoblast differentiation and mineralization. C91 increases the production and biochemical activity of osteoblast marker alkaline phosphatase, the expression of osteoblast marker genes Alpl, Bglap, Runx2, and Sp7, and the formation of bone nodules. Triptonide is a transcription inhibitor of Wnt target gene, which diminishes C91-induced osteoblast differentiation in a dose-dependent manner. Meanwhile, C91 also induces autophagy through autophagosome formation and conversion of autophagy biomarker LC-3I into LC-3II. Autophagy inhibitor 3MA partially reduces C91-induced osteoblast differentiation and mineralization; autophagy inducer Rapamycin increases the expression of β-catenin to promote osteogenic differentiation, but cannot alleviate the inhibition of Triptonide on C91-induced osteogenic differentiation, indicating the crosstalk of canonical Wnt signaling and autophagy regulates C91-induced osteoblast differentiation. Furthermore, in order to simulate the in vivo detection of C91 in osteogenesis process, we made a C91 slow-release hydrogel with our newly established polycaprolactone and cell-integrated 3D printing system (PCCI3D module). The sustained release C91 promotes the differentiation and mineralization of ST2 cells. C91 can also enhance the proliferative activity of ST2 cells. The release rate of C91 from hydrogel gradually decreases within 7 days. During this period, the C91 is released by 83.0% and the cell viability maintained at 96.4%. Therefore, the small molecule Wnt agonist C91 promotes osteogenesis through caonical and autophagy-mediated Wnt signaling pathway with an option for translational application.
    Keywords:  CHIR99021; PCL scaffold; Wnt/β-catenin signaling; autophagy; integrated 3D printing; osteoblast differentiation; osteoporosis; slow-release hydrogel
    DOI:  https://doi.org/10.3389/fendo.2022.926622