bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2022‒05‒01
eight papers selected by
Su Hyun Lee
Seoul National University

  1. Autophagy. 2022 Apr 26. 1-2
      Cancer cells metabolize glutamine mostly through glutaminolysis, a metabolic pathway that activates MTORC1. The AMPK-MTORC1 signaling axis is a key regulator of cell growth and proliferation. Our recent investigation identified that the connection between glutamine and AMPK is not restricted to glutaminolysis. Rather, we demonstrated the crucial role of ASNS (asparagine synthetase (glutamine-hydrolyzing)) and the GABA shunt for the metabolic control of the AMPK-MTORC1 axis during glutamine sufficiency. Our results elucidated a metabolic network by which glutamine metabolism regulates the MTORC1-macroautophagy/autophagy pathway through two independent branches involving glutaminolysis and ASNS-GABA shunt.
    Keywords:  ASNS; GABA-shunt; MTORC1; glutamine; glutamoptosis
  2. Autophagy. 2022 Apr 27. 1-2
      Chaperone-mediated autophagy (CMA) is a selective type of autophagy specialized in the individual degradation of targeted proteins. Its impact in any cancer stem cell (CSC) subtype remained elusive. In a recent study, we characterized the expression of LAMP2A and CMA activity in glioblastoma revealing its enrichment in a glioma stem cell (GSC) subpopulation. LAMP2A downregulation diminishes proliferation and self-renewal and induces apoptosis in GSCs in vitro, whereas it delays tumor progression in vivo. The underlying molecular signature of CMA comprises several proteomic and transcriptomic pathways with special relevance to mitochondrial function, the interferon pathway and extracellular matrix interactions. Remarkably, these activities are translated into the clinical scenario, as glioblastoma (GBM) samples show increased expression of LAMP2 compared to healthy tissue, with this expression being positively associated with malignancy grade, TMZ resistance and lower patient survival. These results reveal a novel function of CMA as an intrinsic regulator of GSC tumorigenic properties and highlight its relevance in GBM progression.
    Keywords:  CMA; Cancer stem cell; LAMP2A; glioblastoma; proteomic and transcriptomic analysis
  3. Autophagy. 2022 Apr 29. 1-3
      Accumulating data indicate that several components of the macroautophagy/autophagy machinery mediate additional functions, which do not depend on autophagosome biogenesis or lysosomal cargo degradation. In this context, we found that the core autophagy protein ATG9A participates in the chemotactic movement of several cell lines, including highly invasive glioblastoma cells. Accordingly, ATG9A-depleted cells are unable to form large and persistent leading-edge protrusions. By the design of an ATG9A-pHluorin construct and TIRF imaging, we established that ATG9A-positive vesicles are targeted toward the migration front, where their exocytosis is synchronized with protrusive activity. We finally demonstrated that ATG9A, through its interaction with clathrin adaptor complexes, controls the delivery of ITGB1 (integrin subunit beta 1) to the migration front and normal adhesion dynamics. Together, our work indicates that ATG9A protein has a wider role than anticipated and constitutes a critical component of vesicular trafficking allowing the expansion of cell protrusions and their anchorage to the extracellular matrix.
    Keywords:  ATG9A; autophagy; cell adhesion; chemotactic migration; exocytosis
  4. Autophagy. 2022 Apr 25.
      Although the role of pancreatic β-cell macroautophagy/autophagy is well known, that of β-cell mitophagy is unclear. We investigated the changes of lysosomal Ca2+ by mitochondrial or metabolic stress that can modulate TFEB activation and, additionally, the role of TFEB-induced mitophagy in β-cell function. Mitochondrial or metabolic stress induces mitophagy, which is mediated by lysosomal Ca2+ release, increased cytosolic [Ca2+] and subsequent TFEB activation. Lysosomal Ca2+ release is replenished by ER→lysosome Ca2+ refilling through ER Ca2+ exit channels, which is important for the increase of cytosolic [Ca2+] and mitophagy by mitochondria stressors. High-fat diet (HFD) feeding augments pancreatic β-cell mitophagy, probably as an adaptation to metabolic stress. HFD-induced increase of β-cell mitophagy is reduced by tfeb KO, leading to increased ROS and decreased mitochondrial complex activity or oxygen consumption in tfeb-KO islets. In tfeb Δβ-cell mice, HFD-induced glucose intolerance and β-cell dysfunction are aggravated. Expression of mitophagy receptor genes including Optn or Calcoco2 is increased by mitochondrial or metabolic stressors in a TFEB-dependent manner, likely contributing to increased mitophagy. These results suggest that lysosomal Ca2+ release in conjunction with ER→lysosome Ca2+ refilling is important for TFEB activation and mitophagy induction, which contributes to pancreatic β-cell adaptation to metabolic stress.
    Keywords:  Ca2+; TFEB; lysosome; mitophagy; pancreatic β-cells
  5. Physiol Rev. 2022 Apr 25.
      As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
    Keywords:  PINK1/Parkin; Parkinson's disease; mitochondrial quality control; mitophagy; protein quality control
  6. BMC Oral Health. 2022 Apr 26. 22(1): 144
      BACKGROUND: Oxidative stress mediated by hyperglycemia damages cell-reparative processes such as mitophagy. Down-regulation of mitophagy is considered to be a susceptible factor for diabetes mellitus (DM) and its complications. However, the role of mitophagy in DM-associated periodontitis has not been fully elucidated. Apoptosis of human gingival epithelial cells (hGECs) is one of the representative events of DM-associated periodontitis. Thus, this study aimed to investigate PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy activated in the process of high glucose (HG)-induced hGECs apoptosis.METHODS: For dose-response studies, hGECs were incubated in different concentrations of glucose (5.5, 15, 25, and 50 mmol/L) for 48 h. Then, hGECs were challenged with 25 mmol/L glucose for 12 h and 48 h, respectively. Apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL), caspase 9 and mitochondrial membrane potential (MMP). Subsequently, autophagy was evaluated by estimating P62, LC3 II mRNA levels, LC3 fluorescent puncta and LC3-II/I ratio. Meanwhile, the involvement of PINK1-mediated mitophagy was assessed by qRT-PCR, western blotting and immunofluorescence. Finally, hGECs were transfected with shPINK1 and analyzed by MMP, caspase 9 and annexin V-FITC apoptosis.
    RESULTS: The number of TUNEL-positive cells and caspase 9 protein were significantly increased in cells challenged with HG (25 mmol/L) for 48 h (HG 48 h). MMP was impaired both at HG 12 h and HG 48 h, but the degree of depolarization was more serious at HG 48 h. The autophagy improved as the amount of LC3 II increased and p62 decreased in HG 12 h. During this process, HG 12 h treatment induced PINK1-mediated mitophagy. PINK1 silencing with HG 12 h resulted in MMP depolarization and cell apoptosis.
    CONCLUSIONS: These results suggested that loss of the PINK1 gene may cause mitochondrial dysfunction and increase sensitivity to HG-induced apoptosis of hGECs at the early stage. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose.
    Keywords:  Apoptosis; Diabetes mellitus; Human gingival epithelial cells; Mitophagy; PINK1; Periodontitis; Short-term high glucose
  7. Clin Transl Med. 2022 Apr;12(4): e752
      BACKGROUND: Ferroptosis is principally caused by iron catalytic activity and intracellular lipid peroxidation. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis. However, the potential interplay between lncRNA LINC01606 and ferroptosis in colon cancer remains elusive.METHODS: The expression level of LNC01606 in colon cancer tissue was detected by quantitative real-time polymerase chain reaction. The functional role of LNC01606 was investigated by gain- and loss-of-function assays both in vitro and in vivo. The LINC01606-SCD1-Wnt/β-catenin-TFE3 axis were screened and validated by DNA/RNA pull down, gas chromatography-mass spectrometry, RNA immunoprecipitation and dual-luciferase reporter.
    RESULTS: The expression of lncRNA LINC01606 was frequently upregulated in human colon cancer and strongly associated with a poor prognosis. LINC01606 functioned as an oncogene and promotes colon cancer cell growth, invasion and stemness both in vitro and in vivo. Moreover, LINC01606 protected colon cancer cells from ferroptosis by decreasing the concentration of iron, lipid reactive oxygen species, mitochondrial superoxide and increasing mitochondrial membrane potential. Mechanistically, LINC01606 enhanced the expression of stearoyl-CoA desaturase 1 (SCD1), serving as a competing endogenous RNA to modulate miR-423-5p expression, subsequently activating the canonical Wnt/β-catenin signaling, and transcription factor binding to IGHM enhancer 3 (TFE3) increased LINC01606 transcription after recruitment to the promoter regions of LINC01606. Furthermore, we confirmed that upregulated LINC01606 and Wnt/β-catenin formed a positive feedback regulatory loop, further inhibiting ferroptosis and enhancing stemness.
    CONCLUSIONS: LINC01606 functions as an oncogene to facilitate tumor cell stemness, proliferation and inhibit ferroptosis and is a promising therapeutic target for colon cancer.
    Keywords:  LINC01606; SCD1; Wnt/β-catenin; colon cancer; ferroptosis; lipid peroxidation
  8. Autophagy. 2022 Apr 26.
      Mitostasis, the process of mitochondrial maintenance by biogenesis and degradative mechanisms, is challenged by the extreme length of axons. PINK1 (PTEN induced putative kinase 1) is a mitochondrial protein that targets damaged mitochondria for mitophagy. In reconciling the short half-life of PINK1 with the need for mitophagy of damaged axonal mitochondria, we found that axonal mitophagy depends on local translation of the Pink1 mRNA. Using live-cell imaging, we detected co-transport of the Pink1 mRNA on mitochondria in neurons, which is crucial for mitophagy in distal parts of the cell. Here we discuss how the coupling of the transcript of a short-lived mitochondrial protein to the movement of its target organelles contributes to our understanding of mitostasis in neurons.
    Keywords:  Axonal biology; RNA transport; local translation; mitochondria; mitophagy