bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2022‒01‒23
four papers selected by
Su Hyun Lee
Seoul National University

  1. Cancers (Basel). 2022 Jan 17. pii: 453. [Epub ahead of print]14(2):
      Targeting FLT3-ITD in AML using TKI against FLT3 cannot prevent relapse even in the presence of complete remission, suggesting the resistance and/or the persistence of leukemic-initiating cells in the hematopoietic niche. By mimicking the hematopoietic niche condition with cultures at low oxygen concentrations, we demonstrate in vitro that FLT3-ITD AML cells decrease their repopulating capacity when Vps34 is inhibited. Ex vivo, AML FLT3-ITD blasts treated with Vps34 inhibitors recovered proliferation more slowly due to an increase an apoptosis. In vivo, mice engrafted with FLT3-ITD AML MV4-11 cells have the invasion of the bone marrow and blood in 2 weeks. After 4 weeks of FLT3 TKI treatment with gilteritinib, the leukemic burden had strongly decreased and deep remission was observed. When treatment was discontinued, mice relapsed rapidly. In contrast, Vps34 inhibition strongly decreased the relapse rate, and even more so in association with mobilization by G-CSF and AMD3100. These results demonstrate that remission offers the therapeutic window for a regimen using Vps34 inhibition combined with mobilization to target persistent leukemic stem cells and thus decrease the relapse rate.
    Keywords:  FLT3-ITD; acute myeloid leukemia; autophagy; leukemic initiating cells; persistence; tyrosine kinase inhibitors
  2. Cancers (Basel). 2022 Jan 13. pii: 381. [Epub ahead of print]14(2):
      Cancer stem cells (CSCs) are a subset of the tumor population that play critical roles in tumorigenicity, metastasis, and relapse. A key feature of CSCs is their resistance to numerous therapeutic strategies which include chemotherapy, radiation, and immune checkpoint inhibitors. In recent years, there is a growing body of literature that suggests a link between CSC maintenance and autophagy, a mechanism to recycle intracellular components during moments of environmental stress, especially since CSCs thrive in a tumor microenvironment that is plagued with hypoxia, acidosis, and lack of nutrients. Autophagy activation has been shown to aid in the upkeep of a stemness state along with bolstering resistance to cancer treatment. However, recent studies have also suggested that autophagy is a double-edged sword with anti-tumorigenic properties under certain circumstances. This review summarizes and integrates what has been published in the literature in terms of what role autophagy plays in stemness maintenance of CSCs and suggests that there is a more complex interplay between autophagy and apoptosis which involves multiple pathways of regulation. Future cancer therapy strategies are needed to eradicate this resistant subset of the cell population through autophagy regulation.
    Keywords:  autophagy; cancer stem cells; metastasis; self-renewal; stemness; treatment resistance
  3. Clin Transl Oncol. 2022 Jan 17.
      Cancer is one of the leading causes of death, with a heavy socio-economical burden for countries. Despite the great advances that have been made in the treatment of cancer, chemotherapy is still the most common method of treatment. However, many side effects, including hepatotoxicity, renal toxicity, and cardiotoxicity, limit the efficacy of conventional chemotherapy. Over recent years, natural products have attracted attention as therapeutic agents against various diseases, such as cancer. Resveratrol (RES), a natural polyphenol occurring in grapes, nuts, wine, and berries, exhibited potential for preventing and treating various cancer types. RES also ameliorates chemotherapy-induced detrimental effects. Furthermore, RES could modulate apoptosis and autophagy as the main forms of cancer cell deaths by targeting various signaling pathways and up/downregulation of apoptotic and autophagic genes. This review will summarize the anti-cancer effects of RES and focus on the fundamental mechanisms and targets for modulating apoptosis and autophagy by RES.
    Keywords:  Apoptosis; Autophagy; Cancer; Cancer cell death; Resveratrol
  4. Stem Cell Reports. 2022 Jan 03. pii: S2213-6711(21)00652-4. [Epub ahead of print]
      Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.
    Keywords:  autophagosome; autophagy; cancer stem cells; embryonal carcinoma stem cells; embryonic stem cells; induced pluripotent stem cells; lysosome