JCI Insight. 2021 Jul 06. pii: 138183. [Epub ahead of print]
Tonghui Xu,
Jialin Guo,
Maozeng Wei,
Jiali Wang,
Kehui Yang,
Chang Pan,
Jiaojiao Pang,
Li Xue,
Qiu-Huan Yuan,
Mengyang Xue,
Jian Zhang,
Wentao Sang,
Tangxing Jiang,
Yuguo Chen,
Feng Xu.
The mitochondrial enzyme acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the detoxification of acetaldehyde and endogenous lipid aldehydes. Approximately 40% of East Asians, accounting for 8% of the human population, carry the E504K mutation in ALDH2 that leads to accumulation of toxic reactive aldehydes and increases the risk for cardiovascular disease (CVD), cancer and Alzheimer's, among other diseases. However, the role of ALDH2 in acute kidney injury (AKI) remains poorly defined and is therefore the subject of the present study using various cellular and organismal sources. In murine models in which AKI was induced by either the contrast agent Iohexol or renal ischemia/reperfusion, knockout and activation/overexpression of ALDH2 was associated with increased and decreased renal injury, respectively. In murine renal tubular epithelial cells (RTECs), ALDH2 upregulated Beclin-1 expression, promoted autophagy activation and eliminated reactive oxygen species (ROS). In vivo and in vitro, both 3-MA and Beclin-1 siRNAs inhibited autophagy and abolished ALDH2 mediated renoprotection. In mice with Iohexol induced AKI, ALDH2 knockdown in RTECs using AAV-shRNA impaired autophagy activation and aggravated renal injury. In human renal proximal tubular epithelial HK-2 cells exposed to Iohexol, ALDH2 activation potentiated autophagy and attenuated apoptosis. In mice with AKI induced by renal ischemia ischemia/reperfusion, ALDH2 overexpression or pretreatment regulated autophagy mitigating apoptosis of RTECs and renal injury. Our data collectively substantiate a critical role of ALDH2 in AKI via autophagy activation involving the Beclin-1 pathway.
Keywords: Autophagy; Hypoxia; Nephrology