bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2021–06–20
nine papers selected by
Su Hyun Lee, Seoul National University



  1. Cell Death Differ. 2021 Jun 15.
      Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin β1 and Talin-1, which facilitated to integrin β1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.
    DOI:  https://doi.org/10.1038/s41418-021-00813-z
  2. Free Radic Biol Med. 2021 Jun 12. pii: S0891-5849(21)00374-9. [Epub ahead of print]
      High-risk human papillomavirus (HR-HPV) are associated with the development of cervical, anus, vagina, vulva, penis, and oropharynx cancer. HR-HPV target and modify the function of different cell biomolecules such as glucose, aminoacids, lipids, among others. The latter induce cell proliferation, cell death evasion, and genomic instability resulting in cell transformation. Lipids are essential biomolecules in HR-HPV infection and cell vesicular trafficking. They are also critical in producing cellular energy, the epithelial-mesenchymal transition (EMT) process, and therapy resistance of HPV-related cancers. HPV proteins induce oxidative stress (OS), which in turn promotes lipid peroxidation and cell damage, resulting in cell death such as apoptosis, autophagy, and ferroptosis. HR-HPV-related cancer cells cope with OS and lipid peroxidation, preventing cell death; however, these cells are sensitized by OS, which could be used as a target for redox therapies to induce their elimination. This review focuses on the role of lipids in HR-HPV infection and HPV-related cancer development, maintenance, resistance to therapy, and the possible treatments associated with lipids. Furthermore, we emphasize the significant role of OS in lipid peroxidation to induce cell death through apoptosis, autophagy, and ferroptosis to eliminate HPV-related cancers.
    Keywords:  Lipid metabolism; apoptosis; cellular trafficking; epithelial-mesenchymal transition (EMT); ferroptosis autophagy; lipogenesis; reactive oxygen species (ROS); β-oxidation
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.06.009
  3. Nat Commun. 2021 06 10. 12(1): 3526
      Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy.
    DOI:  https://doi.org/10.1038/s41467-021-23752-2
  4. Trends Cancer. 2021 Jun 07. pii: S2405-8033(21)00104-7. [Epub ahead of print]
      Autophagy is a catabolic intracellular nutrient-scavenging pathway triggered by nutrient deprivation and stress that captures and degrades intracellular proteins and organelles in lysosomes. The breakdown products are then recycled into metabolic pathways to sustain survival. Organelle turnover by autophagy contributes to quality control and suppresses inflammation. Autophagy is upregulated in many cancers and supports their growth, survival, and malignancy in a tumor cell-autonomous fashion. Host autophagy also promotes tumor growth by maintaining a supply of essential nutrients and suppressing innate and adaptive antitumor immune responses. Autophagy is also upregulated in response to cancer therapy and confers treatment resistance. Thus, autophagy is a cancer vulnerability and its inhibition is under investigation as a novel therapeutic approach.
    Keywords:  T cells; autophagy; cancer; immune response; interferon; metabolism
    DOI:  https://doi.org/10.1016/j.trecan.2021.05.003
  5. Nat Commun. 2021 06 15. 12(1): 3651
      Extracellular cytokines are enriched in the tumor microenvironment and regulate various important properties of cancers, including autophagy. However, the precise molecular mechanisms underlying the link between autophagy and extracellular cytokines remain to be elucidated. In the present study, we demonstrate that IL-6 activates autophagy through the IL-6/JAK2/BECN1 pathway and promotes chemotherapy resistance in colorectal cancer (CRC). Mechanistically, IL-6 triggers the interaction between JAK2 and BECN1, where JAK2 phosphorylates BECN1 at Y333. We demonstrate that BECN1 Y333 phosphorylation is crucial for BECN1 activation and IL-6-induced autophagy by regulating PI3KC3 complex formation. Furthermore, we investigate BECN1 Y333 phosphorylation as a predictive marker for poor CRC prognosis and chemotherapy resistance. Combination treatment with autophagy inhibitors or pharmacological agents targeting the IL-6/JAK2/BECN1 signaling pathway may represent a potential strategy for CRC cancer therapy.
    DOI:  https://doi.org/10.1038/s41467-021-23923-1
  6. Nat Rev Cancer. 2021 Jun 15.
      The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field.
    DOI:  https://doi.org/10.1038/s41568-021-00365-x
  7. EMBO J. 2021 06 14. e105985
      Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.
    Keywords:  PIK3R4; PRKAG2; ULK1; VPS15; p62
    DOI:  https://doi.org/10.15252/embj.2020105985
  8. Carbohydr Polym. 2021 Sep 01. pii: S0144-8617(21)00541-5. [Epub ahead of print]267 118154
      Lentinan (SLNT) has been shown to be directly cytotoxic to cancer cells. However, this direct antitumour effect has not been thoroughly investigated in vivo, and the mechanism remains unclear. We aimed to examine the direct antitumour effect of SLNT on human colon cancer and the mechanism in vivo and in vitro. SLNT significantly inhibited tumour growth and induced autophagy and endoplasmic reticulum stress (ERS) in HT-29 cells and tumour-bearing nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Experiments with the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) showed that autophagy facilitated the antitumour effect of SLNT. Moreover, ERS was identified as the common upstream regulator of SLNT-induced increases in Ca2+concentrations, autophagy and apoptosis by using ERS inhibitors. In summary, our study demonstrated that SLNT exerted direct antitumour effects on human colon cancer via ERS-mediated autophagy and apoptosis, providing a novel understanding of SLNT as an anti-colon cancer therapy.
    Keywords:  Apoptosis; Autophagy; Direct antitumour; Endoplasmic reticulum stress; Lentinan; NOD/SCID mice
    DOI:  https://doi.org/10.1016/j.carbpol.2021.118154
  9. Biochem J. 2021 Jun 25. 478(12): 2297-2308
      Autophagy is an important component of the innate immune response that restricts infection by different types of pathogens. Viruses have developed multiple strategies to avoid autophagy to complete their replication cycle and promote spreading to new hosts. Here, we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein-Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), regulate selective autophagy by inhibiting the activity of the autophagy receptor SQSTM1/p62. We found that all the homologs bind to and deubiquitinate SQSTM1/p62 but with variable efficiency, which correlates with their capacity to prevent the colocalization of light chain 3 (LC3) with SQSTM1/p62 aggregates and promote the accumulation of a model autophagy substrate. The findings highlight important differences in the strategies by which herpesviruses interfere with selective autophagy.
    Keywords:  autophagy; herpesvirus; ubiquitin protease; ubiquitin-proteasome system
    DOI:  https://doi.org/10.1042/BCJ20210225