bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2021‒06‒13
nine papers selected by
Su Hyun Lee
Seoul National University


  1. Autophagy. 2021 Jun 10. 1-3
      Parkinson disease (PD)-causing mutations in the LRRK2 (leucine rich repeat kinase 2) gene hyperactivate LRRK2 kinase activity. Here, we discuss our recent work linking LRRK2 hyperactivation to defective axonal autophagosome transport in neurons. In three different models, we observed that expression of the most common causative mutation for PD, LRRK2G2019S, disrupts processive autophagosome transport in a kinase-dependent manner. Mechanistically, we found that hyperactive LRRK2 recruits SPAG9/JIP4, a motor adaptor known to bind to LRRK2-phosphorylated RAB proteins, to the autophagosomal membrane. Increased SPAG9/JIP4 levels induce abnormal recruitment and activation of kinesin-1, which we propose results in an unproductive tug-of-war between anterograde and retrograde motors bound to autophagosomes. Disruption of autophagosome transport correlates with defective autophagosome maturation, suggesting that hyperactive LRRK2 may impair efficient degradation of autophagosomal cargo. Our work demonstrates that LRRK2 hyperactivation is sufficient to induce defects in autophagosome transport and maturation, further establishing a role of defective autophagy in the pathogenesis of PD.
    Keywords:  Autophagy; JIP4; LRRK2; Parkinson’s disease; axonal transport
    DOI:  https://doi.org/10.1080/15548627.2021.1936933
  2. Autophagy. 2021 Jun 09. 1-2
      WDR45 and WDR45B are β-propeller proteins belonging to the WIPI (WD repeat domain, phosphoinositide interacting) family. Mutations in WDR45 and WDR45B are genetically linked with beta-propeller protein-associated neurodegeneration (BPAN) and intellectual disability (ID), respectively. WDR45 and WDR45B are homologs of yeast Atg18. Atg18 forms a complex with Atg2 for autophagosome biogenesis, probably by transferring lipids from the ER to phagophores. We revealed that WDR45 and WDR45B are critical for autophagosome-lysosome fusion in neural cells. WDR45 and WDR45B, but not their disease-related mutants, bind to the tether protein EPG5 and facilitate its targeting to late endosomes/lysosomes. In Wdr45 Wdr45b-deficient cells, the formation of tether-SNARE fusion machinery is compromised. The macroautophagy/autophagy deficiency in wdr45 wdr45b DKO cells is ameliorated by suppression of O-GlcNAcylation, which promotes autophagosome maturation. Thus, our results provide insights into the pathogenesis of WDR45- and WDR45B-related neurological diseases.
    Keywords:  Autophagy; BPAN; ID; WDR45; WDR45B; autophagosome maturation
    DOI:  https://doi.org/10.1080/15548627.2021.1924039
  3. Autophagy. 2021 Jun 08. 1-14
      Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.
    Keywords:  Aging; beclin 1 mutant mouse; increased autophagy; neural stem cells; neurogenesis; self-renewal
    DOI:  https://doi.org/10.1080/15548627.2021.1936358
  4. Biochem Biophys Res Commun. 2021 Jun 02. pii: S0006-291X(21)00795-6. [Epub ahead of print]563 119-125
      Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.
    Keywords:  Autophagy; Lung cancer; Pirh2
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.024
  5. Autophagy. 2021 Jun 08. 1-22
      The overexpansion of adipose tissues leads to obesity and eventually results in metabolic disorders. Garcinia cambogia (G. cambogia) has been used as an antiobesity supplement. However, the molecular mechanisms underlying the effects of G. cambogia on cellular processes have yet to be fully understood. Here, we discovered that G. cambogia attenuated the expression of CEBPB (CCAAT/enhancer binding protein (C/EBP), beta), an important adipogenic factor, suppressing its transcription in differentiated cells. In addition, G. cambogia inhibited macroautophagic/autophagic flux by decreasing autophagy-related gene expression and autophagosome formation. Notably, G. cambogia markedly elevated the expression of KLF3 (Kruppel-like factor 3 (basic)), a negative regulator of adipogenesis, by reducing SQSTM1/p62-mediated selective autophagic degradation. Furthermore, increased KLF3 induced by G. cambogia interacted with CTBP2 (C-terminal binding protein 2) to form a transcriptional repressor complex and inhibited Cebpa and Pparg transcription. Importantly, we found that RPS6KA1 and STAT3 were involved in the G. cambogia-mediated regulation of CEBPB and autophagic flux. In an obese animal model, G. cambogia reduced high-fat diet (HFD)-induced obesity by suppressing epididymal and inguinal subcutaneous white adipose tissue mass and adipocyte size, which were attributed to the regulation of targets that had been consistently identified in vitro. These findings provide new insight into the mechanism of G. cambogia-mediated regulation of adipogenesis and suggest molecular links to therapeutic targets for the treatment of obesity.
    Keywords:  Adipogenesis; CEBPB; Garcinia cambogia; KLF3; RPS6KA1; SQSTM1/p62; STAT3; autophagy; obesity
    DOI:  https://doi.org/10.1080/15548627.2021.1936356
  6. Nat Commun. 2021 06 08. 12(1): 3444
      AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.
    DOI:  https://doi.org/10.1038/s41467-021-23833-2
  7. Nat Commun. 2021 06 07. 12(1): 3364
      Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL. The K219R MLKL mutation protects animals from necroptosis-induced skin damage and renders cells resistant to pathogen-induced necroptosis. Mechanistically, we show that ubiquitylation of MLKL at K219 is required for higher-order assembly of MLKL at membranes, facilitating its rupture and necroptosis. We demonstrate that K219 ubiquitylation licenses MLKL activity to induce lytic cell death, suggesting that necroptotic clearance of pathogens as well as MLKL-dependent pathologies are influenced by the ubiquitin-signalling system.
    DOI:  https://doi.org/10.1038/s41467-021-23474-5
  8. Proc Natl Acad Sci U S A. 2021 Jun 15. pii: e2020078118. [Epub ahead of print]118(24):
      Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.
    Keywords:  antipsychotic drugs; autophagy; mitochondria; multiple sclerosis; remyelination
    DOI:  https://doi.org/10.1073/pnas.2020078118
  9. Autophagy. 2021 Jun 10. 1-3
      Different types of autophagy co-exist in all mammalian cells, however, the specific contribution of each of these autophagic pathways to the maintenance of cellular proteostasis and cellular function remains unknown. In this work, we have investigated the consequences of failure of chaperone-mediated autophagy (CMA) in neurons and compared the impact, on the neuronal proteome, of CMA loss to that of macroautophagy loss. We found that these autophagic pathways are non-redundant and that CMA is the main one responsible for maintenance of the metastable proteome (the one at risk of aggregation). We demonstrate that loss of CMA, as the one that occurs in aging, has a synergistic effect with the proteotoxicity associated with neurodegenerative conditions such as Alzheimer disease (AD) and, conversely, that, pharmacological enhancement of CMA is effective in improving both behavior and pathology in two different AD mouse models.
    Keywords:  Alzheimer disease; chaperones; chemical activators of autophagy; lysosomes; metastable proteome; neurodegeneration; protein aggregation; proteostasis; tau; tauopathies
    DOI:  https://doi.org/10.1080/15548627.2021.1935007