bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2021‒05‒02
ten papers selected by
Su Hyun Lee
Seoul National University


  1. EMBO J. 2021 May 01. e103563
      The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.
    Keywords:  ERGIC; LC3C; TFG; autophagy
    DOI:  https://doi.org/10.15252/embj.2019103563
  2. Mol Cell. 2021 Apr 16. pii: S1097-2765(21)00215-X. [Epub ahead of print]
      Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.
    Keywords:  ATG4; ATG8; LC3-associated phagocytosis; non-canonical autophagy; phosphatidylserine
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.020
  3. Nat Cell Biol. 2021 Apr 26.
      Macroautophagic clearance of cytosolic materials entails the initiation, growth and closure of autophagosomes. Cargo triggers the assembly of a web of cargo receptors and core machinery. Autophagy-related protein 9 (ATG9) vesicles seed the growing autophagosomal membrane, which is supplied by de novo phospholipid synthesis, phospholipid transport via ATG2 proteins and lipid flipping by ATG9. Autophagosomes close via ESCRT complexes. Here, we review recent discoveries that illuminate the molecular mechanisms of autophagosome formation and discuss emerging questions in this rapidly developing field.
    DOI:  https://doi.org/10.1038/s41556-021-00669-y
  4. Autophagy. 2021 Apr 27. 1-18
      Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
    Keywords:  Autophagy; Crohn disease; IBD; MTOR; intestinal epithelium; intestinal stem cells
    DOI:  https://doi.org/10.1080/15548627.2021.1909406
  5. Cells. 2021 Apr 17. pii: 929. [Epub ahead of print]10(4):
      Autophagy is a specific macromolecule and organelle degradation process. The target macromolecule or organelle is first enclosed in an autophagosome, and then delivered along acetylated microtubules to the lysosome. Autophagy is triggered by stress and largely contributes to cell survival. We have previously shown that S6K1 kinase is essential for autophagic flux under stress conditions. Here, we aimed to elucidate the underlying mechanism of S6K1 involvement in autophagy. We stimulated autophagy in S6K1/2 double-knockout mouse embryonic fibroblasts by exposing them to different stress conditions. Transient gene overexpression or silencing, immunoblotting, immunofluorescence, flow cytometry, and ratiometric fluorescence analyses revealed that the perturbation of autophagic flux in S6K1-deficient cells did not stem from impaired lysosomal function. Instead, the absence of S6K1 abolished stress-induced tubulin acetylation and disrupted the acetylated microtubule network, in turn impairing the autophagosome-lysosome fusion. S6K1 overexpression restored tubulin acetylation and autophagic flux in stressed S6K1/2-deficient cells. Similar effect of S6K1 status was observed in prostate cancer cells. Furthermore, overexpression of an acetylation-mimicking, but not acetylation-resistant, tubulin variant effectively restored autophagic flux in stressed S6K1/2-deficient cells. Collectively, S6K1 controls tubulin acetylation, hence contributing to the autophagic flux induced by different stress conditions and in different cells.
    Keywords:  S6 kinase 1 (S6K1); autophagic flux; autophagosome-lysosome fusion; lysosome; serum deprivation; sulforaphane; tubulin acetylation
    DOI:  https://doi.org/10.3390/cells10040929
  6. Autophagy. 2021 Apr 27. 1-14
      Circular RNAs (circRNAs) are non-coding RNAs that have attracted considerable attention in recent years. Owing to their distinct circular structure, circRNAs are stable in cells. Autophagy is a catabolic process that helps in the degradation and recycling of harmful or inessential biological macromolecules in cells and enables cells to adapt to stress and changes in the internal and external environments. Evidence has shown that circRNAs influence the course of a disease by regulating autophagy, which indicates that autophagy is involved in the onset and development of various diseases and can affect drug resistance (for example, it affects cisplatin resistance in tumors). In this review, we summarized the role of circRNAs in autophagy and their influence on disease onset and progression as well as drug resistance. The review will expand our understanding of tumors as well as cardiovascular and neurological diseases and also suggest novel therapeutic strategies.Abbreviations: ACR: autophagy-related circRNA; ADSCs: adipogenic mesenchymal stem cells; AMPK: AMP-activated protein kinase; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; ceRNA: competing endogenous RNA; circRNA: circular RNA; CMA: chaperone-mediated autophagy; EPCs: endothelial progenitor cells; LE/MVBs: late endosomes/multivesicular bodies; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSCLC: non-small cell lung cancer; PDLSCs: periodontal ligament stem cells; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate 1,2-dipalmitoyl; PTEN: phosphatase and tensin homolog; RBPs: RNA-binding proteins; SiO2: silicon dioxide; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase 1.
    Keywords:  Autophagy; cancer; cardiovascular disease; circRNAs; neurological disease
    DOI:  https://doi.org/10.1080/15548627.2021.1917131
  7. Int J Mol Sci. 2021 Apr 21. pii: 4352. [Epub ahead of print]22(9):
      The mechanisms and physiological implications of regulated cell death (RCD) have been extensively studied. Among the regulatory mechanisms of RCD, ubiquitination and deubiquitination enable post-translational regulation of signaling by modulating substrate degradation and signal transduction. Deubiquitinases (DUBs) are involved in diverse molecular pathways of RCD. Some DUBs modulate multiple modalities of RCD by regulating various substrates and are powerful regulators of cell fate. However, the therapeutic targeting of DUB is limited, as the physiological consequences of modulating DUBs cannot be predicted. In this review, the mechanisms of DUBs that regulate multiple types of RCD are summarized. This comprehensive summary aims to improve our understanding of the complex DUB/RCD regulatory axis comprising various molecular mechanisms for diverse physiological processes. Additionally, this review will enable the understanding of the advantages of therapeutic targeting of DUBs and developing strategies to overcome the side effects associated with the therapeutic applications of DUB modulators.
    Keywords:  apoptosis; autophagic cell death; deubiquitinase; ferroptosis; necroptosis; paraptosis; physiology; pyroptosis
    DOI:  https://doi.org/10.3390/ijms22094352
  8. Semin Cancer Biol. 2021 Apr 21. pii: S1044-579X(21)00115-2. [Epub ahead of print]
      A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
    Keywords:  Apoptosis resistance; Carcinogenesis; Inflammation; Metabolic reprogramming; Metals; Nrf2; Oxidative stress; p62
    DOI:  https://doi.org/10.1016/j.semcancer.2021.04.014
  9. Zhongguo Fei Ai Za Zhi. 2021 Apr 20. 24(4): 236-244
      BACKGROUND: Lung cancer is a malignant with high incidence and mortality and adenocarcinoma is among the most popular subtypes. Epidermal growth factor receptor (EGFR) mutation is one of the most important driver mutations for lung adenocarcinoma and EGFR-tyrosine kinase inhibitor (TKI) will benefit those patients with sensitive EGFR mutations. Recently, immune checkpoint inhibitor (ICI) therapy, provide a new breakthrough treatment for lung cancer patients. Whereas immunotherapy as an emerging treatment does not benefit patients with EGFR mutations, for which mechanistic studies are poorly defined and focused on the link of EGFR mutations and programmed cell death-ligand 1 (PD-L1) expression, we speculate that the different immune microenvironment associated with the two classes of patients.METHODS: Lung adenocarcinoma datasets were collected from the Cancer Genome Atlas (TCGA) database, and clinical information and gene expression profiles were downloaded. The immune related lymphocyte infiltration in TCGA database were generated through timer 2.0 GSEA was used to analyze the difference of pathway expression between EGFR mutant patients and wild type patients.
    RESULTS: EGFR mutation was more frequently among women and never smokers. Immunoinfiltration analysis showed that patients with EGFR mutation tends to have more tumor associated fibroblasts, common myeloid progenitor cells, hematopoietic stem cells, effector CD4⁺ T cells and natural killer T cells infiltration, and less memory B cells, naïve B cells, plasma B cells, plasmacytoid dendritic cells, memory CD4⁺ T cells, CD4⁺ helper T cells 2, naive CD8⁺ T cells, CD8⁺ T cells and central memory CD8⁺ T cells infiltration. Moreover, patients with more infiltration of CD8⁺ T cells, natural killer T cells, memory B cells and hematopoietic stem cells, tends have better prognosis (Log-rank test, P=0.017, 0.0093, 0.018, 0.016). However, the patients with more CD4⁺ T th2 infiltration in the tumor tends to have worse prognosis (Log-rank test, P=0.016). Furthermore, the results of gene set enrichment analysis showed that compared with the lung adenocarcinoma patients with EGFR wild type, the three pathways positive regulation of natural killer (NK) cell-mediated immune response to tumor cells, NK cell activation involved in immune response, and NK cell-mediated immune response to tumor cells related to natural killer cells in patients with EGFR mutation were down regulated, while the pathway the positive regulation of cytokine secretion involved in immune response was up-regulated in EGFR mutation patients.
    CONCLUSIONS: The tumour microenvironment of patients with EGFR mutations lacks potent tumour killing effector cells and appears dysfunctional with effector cells. This may be a potential reason for the poor efficacy of immunotherapy in patients with EGFR mutations.
    Keywords:  Epidermal growth factor receptor; Immune infiltration; Immune microenvironment; Immunotherapy; Lung neoplasms
    DOI:  https://doi.org/10.3779/j.issn.1009-3419.2021.102.15
  10. Cancers (Basel). 2021 Apr 28. pii: 2134. [Epub ahead of print]13(9):
      BACKGROUND: Interleukin-6 (IL-6) released by cancer-associated fibroblasts (CAFs) has been shown to associate with the malignant behavior of cholangiocarcinoma (CCA). Here, we aimed to validate with clinical and molecular data the hypothesis that CAF infiltration and release of IL-6 predict poor prognosis in CCA patients following dysregulation of autophagy in cancer cells.METHODS: Stromal IL-6 and cancer-cell-associated autophagy proteins LC3 and p62 were assayed by Tissue MicroArray immunohistochemistry and their expression correlated with overall survival (OS) in a cohort of 70 CCA patients. The 5-FU cytotoxicity and autophagy were determined in CCA cells cultured with CAF-conditioned medium.
    RESULTS: We show that patients bearing a CCA with low production of stromal IL-6 and active autophagy flux in the cancer cells have the best prognosis and this correlates with a more effective response to post-operative chemotherapy. A similar trend was observed in CCA patients from the TCGA database. In vitro genetic manipulation of IL-6 production by primary CAFs isolated from human CCA showed that IL-6 impairs the autophagy-associated apoptotic response to 5-FU in human CCA cells. Stromal IL-6 inhibition of autophagy in cancer cells was confirmed in an animal model of CCA.
    CONCLUSION: Our data support a therapeutic strategy that includes autophagy-enhancing drugs along with adjuvants limiting the stromal inflammation (i.e., the secretion of IL-6) to improve the survival of CCA patients.
    Keywords:  autophagy; cancer therapy; cancer-associated fibroblasts; cholangiocarcinoma; cytokines; desmoplastic stroma; interleukin-6
    DOI:  https://doi.org/10.3390/cancers13092134