bims-antpol Biomed News
on Antiviral properties of polyphenols
Issue of 2024–08–18
two papers selected by
Rick Sheridan, EMSKE Phytochem



  1. Sci Rep. 2024 08 15. 14(1): 18929
      Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to neonatal piglets, particularly due to the limited efficacy of existing vaccines and the scarcity of efficacious therapeutic drugs. Gegen Qinlian Decoction (GQD) has been employed for over two millennia in treating infectious diarrhea. Nonetheless, further scrutiny is required to improve the drug's efficacy and elucidate its underlying mechanisms of action. In this study, a modified GQD (MGQD) was developed and demonstrated its capacity to inhibit the replication of PEDV. Animal trials indicated that MGQD effectively alleviated pathological damage in immune tissues and modulated T-lymphocyte subsets. The integration of network analysis with UHPLC-MS/MS facilitated the identification of active ingredients within MGQD and elucidated the molecular mechanisms underlying its therapeutic effects against PEDV infections. In vitro studies revealed that MGQD significantly impeded PEDV proliferation in IPEC-J2 cells, promoting cellular growth via virucidal activity, inhibition of viral attachment, and disruption of viral biosynthesis. Furthermore, MGQD treatment led to increased expression levels of IFN-α, IFN-β, and IFN-λ3, while concurrently decreasing the expression of TNF-α, thereby enhancing resistance to PEDV infection in IPEC-J2 cells. In conclusion, our findings suggest that MGQD holds promise as a novel antiviral agent for the treatment of PEDV infections.
    Keywords:  IFN-β; IPEC-J2 cells; Modified Gegen Qinlian decoction; Network Pharmacology; Porcine epidemic diarrhea virus
    DOI:  https://doi.org/10.1038/s41598-024-70059-5
  2. J Sep Sci. 2024 Aug;47(15): e2400372
      The purification of flavonoids using the macroporous polymer resin method has gained attention in recent years due to its simplicity, precision, cost-effectiveness, and the ability to separate flavonoids from other constituents. Several studies have been conducted to investigate the efficiency and effectiveness of macroporous polymer resin in purifying flavonoids from various plant sources. This review aims to evaluate the existing literature on macroporous polymer resin purification of flavonoids and provide a comprehensive analysis of the current research trends and advancements in this field. It also highlights the importance of optimizing the adsorption parameters and conditions such as resin type, resin concentration, pH, and temperature for efficient purification of flavonoids using macroporous polymer resin. The key findings of this review reveal that macroporous resins with weak polarity, large surface areas, and pore diameters have a stronger adsorption capacity for flavonoids compared to polar resins. Furthermore, ultrasonic-solvent assisted extraction often combines with macroporous resin for effective the extraction and purification of flavonoids.
    Keywords:  extraction; flavonoid; macroporous resin; purification
    DOI:  https://doi.org/10.1002/jssc.202400372