bims-antpol Biomed News
on Antiviral properties of polyphenols
Issue of 2023–12–24
two papers selected by
Rick Sheridan, EMSKE Phytochem



  1. J Pharm Biomed Anal. 2023 Dec 09. pii: S0731-7085(23)00683-0. [Epub ahead of print]239 115914
      Plant-derived phenolic compounds are regularly ingested as food compounds or as food supplements. Concentrations of individual compounds and metabolites are typically measured in serum or urine samples. This, however, allows no conclusion on the distribution into organs and tissues. An easily accessible biofluid is saliva. At this point, it was not clear yet, whether polyphenols circulating in the blood would be secreted or diffuse into saliva. The purpose of the present study was to develop and validate a method using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for analysis of phenolic compounds in human saliva. Method validation for the quantification of taxifolin, ferulic acid, caffeic acid, gallic acid, para-coumaric acid, and protocatechuic acid and the gut microbial catechin metabolite δ-(3,4-dihydroxyphenyl)-γ-valerolactone (M1) in human saliva was performed according to current guidelines for bioanalytical method validation. The lower limit of quantification ranged from 0.82 ng/ml for M1 to 8.20 ng/ml for protocatechuic acid. The method was successfully applied to an authentic saliva sample of a volunteer after swallowing of procyanidin-rich pine bark extract capsules (dietary supplement Pycnogenol®). All polyphenols except ferulic acid were quantified at concentrations ranging from 1.20 ng/ml (M1) to 10.34 ng/ml (gallic acid). Notably, in contrast to serum samples, all phenolic compounds were present without sulfate or glucuronic acid conjugation in saliva, suggesting an enzymatic deconjugation, e.g., by a β-glucuronidase activity, during compound transfer from serum to saliva. Since M1 is only produced in the gut, its presence in saliva ruled out the possibility of sample contamination by phenolic compounds residing in the oral cavity after food intake. To the best of our knowledge, this is the first time that the gut microbiota-derived metabolite M1 has been detected in saliva. To further investigate the role of phenolic compounds in saliva, the described analytical method can be applied in clinical studies investigating the biodistribution of polyphenols and their metabolites.
    Keywords:  Distribution; Human saliva; LC-ESI-MS/MS; Validation
    DOI:  https://doi.org/10.1016/j.jpba.2023.115914
  2. J Ethnopharmacol. 2023 Dec 20. pii: S0378-8741(23)01521-0. [Epub ahead of print] 117651
       ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro.
    AIM OF THE STUDY: To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90.
    MATERIALS AND METHODS: The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy.
    RESULTS: Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin.
    CONCLUSIONS: MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
    Keywords:  Anticomplement activity; Myricetin substituted polysaccharide; Structural characterization; Tamaricaceae; Viral pneumonia
    DOI:  https://doi.org/10.1016/j.jep.2023.117651