bims-almceb Biomed News
on Acute Leukemia Metabolism and Cell Biology
Issue of 2021–09–05
nine papers selected by
Camila Kehl Dias, Federal University of Rio Grande do Sul



  1. Leukemia. 2021 Aug 30.
      Acute myeloid leukemia (AML) is considered a poor prognosis malignancy where patients exhibit altered glucose metabolism and stem cell signatures that contribute to AML growth and maintenance. Here, we report that the epigenetic factor, Ten-Eleven Translocation 3 (TET3) dioxygenase is overexpressed in AML patients and functionally validated human leukemic stem cells (LSCs), is required for leukemic growth by virtue of its regulation of glucose metabolism in AML cells. In human AML cells, TET3 maintains 5-hydroxymethylcytosine (5hmC) epigenetic marks and expression of early myeloid progenitor program, critical glucose metabolism and STAT5A signaling pathway genes, which also positively correlate with TET3 expression in AML patients. Consequently, TET3 depletion impedes hexokinase activity and L-Lactate production in AML cells. Conversely, overexpression of TET3 in healthy human hematopoietic stem progenitors (HSPCs) upregulates the expression of glucose metabolism, STAT5A signaling and AML associated genes, and impairs normal HSPC lineage differentiation in vitro. Finally, TET3 depletion renders AML cells highly sensitive to blockage of the TET3 downstream pathways glycolysis and STAT5 signaling via the combination of 2-Deoxy-D-glucose and STAT5 inhibitor which preferentially targets AML cells but spares healthy CD34+ HSPCs.
    DOI:  https://doi.org/10.1038/s41375-021-01390-3
  2. J Bioenerg Biomembr. 2021 Sep 01.
      The poor outcomes in acute myeloid leukemia (AML) necessitate new treatments. In this work, we identified that anisomycin is a potential selective anti-AML candidate, particularly for those with FLT3-ITD mutation. We found that anisomycin potently inhibited proliferation and induced apoptosis in multiple AML cell lines. Anisomycin was effective in targeting progenitor cells isolated from all tested pediatric AML patients, while sparing normal counterparts. Using AML xenograft mouse models, anisomycin exhibited inhibitory effect on tumor growth throughout the whole duration without causing toxicity in mice. The combination of anisomycin with standard of care drugs is synergistic and selective in AML cell culture system and mouse model. In addition, FLT3-ITD cells were more sensitive to anisomycin than FLT3 WT cells. Mechanistic studies revealed that anisomycin acted on AML in a p38-independent manner. We found that anisomycin decreased mitochondrial respiration by disrupting complex I activity, leading to intracellular oxidative stress. AML ρ0 cells that lack of mitochondrial respiration exhibited resistance to anisomycin. Finally, we showed that mitochondrial biogenesis contributes to differential sensitivity of FLT3-ITD and FLT3 WT cells to anisomycin. Our work is the first to systematically demonstrate that anisomycin is a useful addition to the treatment armamentarium for AML. Our findings highlight the therapeutic value of mitochondrial respiration inhibition in AML patients harboring FLT3-ITD mutation.
    Keywords:  Anisomycin; Mitochondrial respiration; Pediatric AML; Synergy
    DOI:  https://doi.org/10.1007/s10863-021-09918-z
  3. Blood Adv. 2021 Sep 01. pii: bloodadvances.2020003958. [Epub ahead of print]
      Acute myeloid leukemia (AML) is the commonest acute leukemia in adults. Disease heterogeneity is well-documented and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) of risk-stratified AMLs are crucial for studying AML biology and testing novel therapeutics. Despite recent advances in PDX modeling of AML, reproducible engraftment of human AML is mainly limited to high-risk (HR) cases, with inconsistent or very protracted engraftment observed for favorable-risk (FR) and intermediate-risk (IR) patients. We have characterized the engraftment robustness/kinetics in NSGS mice of 28 AML patients grouped according to molecular/cytogenetic classification, and have assessed whether the orthotopic co-administration of patient-matched bone marrow mesenchymal stromal cells (BM-MSCs) improves AML engraftment. PDX event-free survival correlated well with the predictable prognosis of risk-stratified AML patients. The majority (85%-94%) of the mice were engrafted in BM independently of the risk group, although HR-AML patients showed engraftment levels significantly superior to those of FR- and IR-AML patients. Importantly, the engraftment levels observed in NSGS mice by week 6 remained stable overtime. Serial transplantation and long-term culture-initiating cell (LTC-IC) assays revealed long-term engraftment limited to HR-AML patients, fitter leukemia-initiating cells (LICs) in HR- than in FR- or IR-AML samples, and the presence of AML-LICs in the CD34- leukemic fraction, regardless the risk group. Finally, orthotopic co-administration of patient-matched BM-MSCs with AML cells resulted dispensable for BM engraftment levels but favored peripheralization of engrafted AML cells. This comprehensive characterization of human AML engraftment in NSGS mice offers a valuable platform for in vivo testing of targeted therapies in risk-stratified AML patient samples.
    DOI:  https://doi.org/10.1182/bloodadvances.2020003958
  4. Leukemia. 2021 Aug 30.
      Lysosomes, since their discovery, have been primarily known for degrading cellular macromolecules. However, in recent studies, they have begun to emerge as crucial regulators of cell homeostasis. They are at the crossroads of catabolic and anabolic pathways and are intricately involved in cellular trafficking, nutrient signaling, energy metabolism, and immune regulation. Their involvement in such essential cellular functions has renewed clinical interest in targeting the lysosome as a novel way to treat disease, particularly cancer. Acute myeloid leukemia (AML) is an aggressive blood cancer with a low survival probability, particularly in older patients. The genomic landscape of AML has been extensively characterized but few targeted therapies (with the exception of differentiation therapy) can achieve a long-term cure. Therefore, there is an unmet need for less intensive and more tolerable therapeutic interventions. In this review, we will give an overview on the myriad of functions performed by lysosomes and their importance in malignant disease. Furthermore, we will discuss their relevance in hematopoietic cells and different ways to potentially target them in AML.
    DOI:  https://doi.org/10.1038/s41375-021-01388-x
  5. Exp Hematol. 2021 Aug 28. pii: S0301-472X(21)00289-7. [Epub ahead of print]
      Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multi-lineage differentiation capacity. Homeostasis is critical for HSC potential and life-long hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt) -mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, as it responses to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. The dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, and autophagy, and aging, as well as transformation of HSCs to leukemia stem cells (LSCs). Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights for future clinical applications.
    Keywords:  Akt-mTOR; Hematopoietic stem cells; Homeostasis; Leukemia stem cells
    DOI:  https://doi.org/10.1016/j.exphem.2021.08.009
  6. Signal Transduct Target Ther. 2021 Sep 01. 6(1): 330
      Surgery is the common treatment for early lung cancer with multiple pulmonary nodules, but it is often accompanied by the problem of significant malignancy of other nodules in non-therapeutic areas. In this study, we found that a combined treatment of local radiofrequency ablation (RFA) and melatonin (MLT) greatly improved clinical outcomes for early lung cancer patients with multiple pulmonary nodules by minimizing lung function injury and reducing the probability of malignant transformation or enlargement of nodules in non-ablated areas. Mechanically, as demonstrated in an associated mouse lung tumor model, RFA not only effectively remove treated tumors but also stimulate antitumor immunity, which could inhibit tumor growth in non-ablated areas. MLT enhanced RFA-stimulated NK activity and exerted synergistic antitumor effects with RFA. Transcriptomics and proteomics analyses of residual tumor tissues revealed enhanced oxidative phosphorylation and reduced acidification as well as hypoxia in the tumor microenvironment, which suggests reprogrammed tumor metabolism after combined treatment with RFA and MLT. Analysis of residual tumor further revealed the depressed activity of MAPK, NF-kappa B, Wnt, and Hedgehog pathways and upregulated P53 pathway in tumors, which was in line with the inhibited tumor growth. Combined RFA and MLT treatment also reversed the Warburg effect and decreased tumor malignancy. These findings thus demonstrated that combined treatment of RFA and MLT effectively inhibited the malignancy of non-ablated nodules and provided an innovative non-invasive strategy for treating early lung tumors with multiple pulmonary nodules. Trial registration: www.chictr.org.cn , identifier ChiCTR2100042695, http://www.chictr.org.cn/showproj.aspx?proj=120931 .
    DOI:  https://doi.org/10.1038/s41392-021-00745-7
  7. Leukemia. 2021 Aug 31.
      T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.
    DOI:  https://doi.org/10.1038/s41375-021-01392-1
  8. Methods Mol Biol. 2022 ;2343 57-70
      Phosphoglycerate kinase 1 (PGK1) is the first enzyme in glycolysis to generate a molecule of ATP in the conversion of 1,3-bisphosphoglycerate (1,3-BPG) to 3-phosphoglycerate (3-PG). In addition to the role of glycolysis, PGK-1 acts as a polymerase alpha cofactor protein, with effects on the tricarboxylic acid cycle, DNA replication and repair. Posttranslational modifications such as methylation, phosphorylation, and acetylation have been seen to activate PGK1 in cancer. High levels of intracellular PGK1 are associated with tumorigenesis and progression, and chemoradiotherapy resistance. However, high levels of extracellular PGK1 suppress angiogenesis and subsequently counteract cancer malignancy. Here we have summarized the current knowledge on the mechanisms and effects of PGK1 in various tumor types and evaluated its potential prognostic and therapeutic value in cancer. The data summarized here aims at providing molecular information and new ideas of employing natural products to combat cancer associated with PGK1.
    Keywords:  Metabolism and cancer; Molecular modification; Natural products; PGK1; Regulation
    DOI:  https://doi.org/10.1007/978-1-0716-1558-4_4
  9. Int J Cancer. 2021 Aug 30.
      While immunotherapy has achieved unprecedented success in conquering cancer, the majority of patients develop primary or acquired resistance to immunotherapy, largely in part due to the complicated metabolic networks in the tumor microenvironment. The microenvironmental metabolic networks are woven by a set of metabolic checkpoints, and accumulating evidence indicates that these metabolic checkpoints orchestrate antitumor immunity and immunotherapy. Metabolic checkpoints can regulate T cell development, differentiation and function, orchestrate metabolic competition between tumor cells and infiltrating T cells, and respond to the metabolic stress imposed on the infiltrating T cells. Furthermore, metabolic checkpoints and pathways can modulate the expression profiles of immune checkpoint receptors and ligands and vice versa. Therefore, repurposing interventions targeting metabolic checkpoints might synergize with immunotherapy, and promising approaches to reprogram the metabolic environment are much more warranted. In this review, we summarize recent researches on the metabolic checkpoints and discuss how these metabolic checkpoints regulate antitumor immunity and the promising approaches to modulate these metabolic checkpoints in the combination therapy. A comprehensive and objective understanding of the metabolic checkpoints might help the research and development of novel approaches to antitumor immunotherapy. This article is protected by copyright. All rights reserved.
    Keywords:  Antitumor immunotherapy; Immune checkpoints; Metabolic checkpoints; T cells
    DOI:  https://doi.org/10.1002/ijc.33781