bims-adreca Biomed News
on Adrenal calcium
Issue of 2024–03–24
two papers selected by
Bakhta Fedlaoui, INSERM



  1. Front Endocrinol (Lausanne). 2024 ;15 1286297
      Double somatic mutations in CTNNB1 and GNA11/Q have recently been identified in a small subset of aldosterone-producing adenomas (APAs). As a possible pathogenesis of APA due to these mutations, an association with pregnancy, menopause, or puberty has been proposed. However, because of its rarity, characteristics of APA with these mutations have not been well characterized. A 46-year-old Japanese woman presented with hypertension and hypokalemia. She had two pregnancies in the past but had no history of pregnancy-induced hypertension. She had regular menstrual cycle at presentation and was diagnosed as having primary aldosteronism after endocrinologic examinations. Computed tomography revealed a 2 cm right adrenal mass. Adrenal venous sampling demonstrated excess aldosterone production from the right adrenal gland. She underwent right laparoscopic adrenalectomy. The resected right adrenal tumor was histologically diagnosed as adrenocortical adenoma and subsequent immunohistochemistry (IHC) revealed diffuse immunoreactivity of aldosterone synthase (CYP11B2) and visinin like 1, a marker of the zona glomerulosa (ZG), whereas 11β-hydroxylase, a steroidogenic enzyme for cortisol biosynthesis, was mostly negative. CYP11B2 IHC-guided targeted next-generation sequencing identified somatic CTNNB1 (p.D32Y) and GNA11 (p.Q209H) mutations. Immunofluorescence staining of the tumor also revealed the presence of activated β-catenin, consistent with features of the normal ZG. The expression patterns of steroidogenic enzymes and related proteins indicated ZG features of the tumor cells. PA was clinically and biochemically cured after surgery. In conclusion, our study indicated that CTNNB1 and GNA11-mutated APA has characteristics of the ZG. The disease could occur in adults with no clear association with pregnancy or menopause.
    Keywords:  CTNNB1; CYP11B2; GNA11; aldosterone-producing adenoma; primary aldosteronism; somatic mutation
    DOI:  https://doi.org/10.3389/fendo.2024.1286297
  2. Hypertension. 2024 Apr;81(4): 811-822
       BACKGROUND: The zona glomerulosa of the adrenal gland is responsible for the synthesis and release of the mineralocorticoid aldosterone. This steroid hormone regulates salt reabsorption in the kidney and blood pressure. The most important stimuli of aldosterone synthesis are the serum concentrations of angiotensin II and potassium. In response to these stimuli, voltage and intracellular calcium levels in the zona glomerulosa oscillate, providing the signal for aldosterone synthesis. It was proposed that the voltage-gated T-type calcium channel CaV3.2 is necessary for the generation of these oscillations. However, Cacna1h knock-out mice have normal plasma aldosterone levels, suggesting additional calcium entry pathways.
    METHODS: We used a combination of calcium imaging, patch clamp, and RNA sequencing to investigate calcium influx pathways in the murine zona glomerulosa.
    RESULTS: Cacna1h-/- glomerulosa cells still showed calcium oscillations with similar concentrations as wild-type mice. No calcium channels or transporters were upregulated to compensate for the loss of CaV3.2. The calcium oscillations observed were instead dependent on L-type voltage-gated calcium channels. Furthermore, we found that L-type channels can also partially compensate for an acute inhibition of CaV3.2 in wild-type mice. Only inhibition of both T- and L-type calcium channels abolished the increase of intracellular calcium caused by angiotensin II in wild-type.
    CONCLUSIONS: Our study demonstrates that T-type calcium channels are not strictly required to maintain glomerulosa calcium oscillations and aldosterone production. Pharmacological inhibition of T-type channels alone will likely not significantly impact aldosterone production in the long term.
    Keywords:  aldosterone; calcium; calcium channel blockers; calcium signaling; zona glomerulosa
    DOI:  https://doi.org/10.1161/HYPERTENSIONAHA.123.21798