bims-adipim Biomed News
on Adipose immunity and immunometabolism
Issue of 2023–05–28
sixteen papers selected by
Matthew C. Sinton, University of Glasgow



  1. Life Metab. 2022 Dec;1(3): 258-269
      Obesity is characterized by chronic, low-grade inflammation, which is driven by macrophage infiltration of adipose tissue. PPARγ is well established to have an anti-inflammatory function in macrophages, but the mechanism that regulates its function in these cells remains to be fully elucidated. PPARγ undergoes post-translational modifications (PTMs), including acetylation, to mediate ligand responses, including on metabolic functions. Here, we report that PPARγ acetylation in macrophages promotes their infiltration into adipose tissue, exacerbating metabolic dysregulation. We generated a mouse line that expresses a macrophage-specific, constitutive acetylation-mimetic form of PPARγ (K293Qflox/flox:LysM-cre, mK293Q) to dissect the role of PPARγ acetylation in macrophages. Upon high-fat diet feeding to stimulate macrophage infiltration into adipose tissue, we assessed the overall metabolic profile and tissue-specific phenotype of the mutant mice, including responses to the PPARγ agonist Rosiglitazone. Macrophage-specific PPARγ K293Q expression promotes proinflammatory macrophage infiltration and fibrosis in epididymal white adipose tissue, but not in subcutaneous or brown adipose tissue, leading to decreased energy expenditure, insulin sensitivity, glucose tolerance, and adipose tissue function. Furthermore, mK293Q mice are resistant to Rosiglitazone-induced improvements in adipose tissue remodeling. Our study reveals that acetylation is a new layer of PPARγ regulation in macrophage activation, and highlights the importance and potential therapeutic implications of such PTMs in regulating metabolism.
    Keywords:  PPARγ acetylation; adipose tissue remodeling; fibrosis; inflammation; macrophage
    DOI:  https://doi.org/10.1093/lifemeta/loac032
  2. Am J Physiol Endocrinol Metab. 2023 May 24.
      Adipose tissues accumulate excess energy as fat and heavily influence metabolic homeostasis. O-GlcNAc modification (O-GlcNAcylation), which involves the addition of N-acetylglucosamine to proteins by O-GlcNAc transferase (Ogt), modulates multiple cellular processes. However, little is known about the role of O-GlcNAcylation in adipose tissues during bodyweight gain due to overnutrition. Here, we report on O-GlcNAcylation in mice with high-fat diet (HFD)-induced obesity. Mice with knockout of Ogt in adipose tissue achieved using adiponectin promoter-driven Cre recombinase (Ogt-FKO) gained less bodyweight than control mice under HFD. Surprisingly, Ogt-FKO mice exhibited glucose intolerance and insulin resistance, despite their reduced bodyweight gain, as well as decreased expression of de novo lipogenesis genes and increased expression of inflammatory genes, resulting in fibrosis at 24 weeks of age. Primary cultured adipocytes derived from Ogt-FKO mice showed decreased lipid accumulation. Both in primary cultured adipocytes and 3T3-L1 adipocytes treated with Ogt inhibitor showed increased secretion of free fatty acids. Medium derived from these adipocytes stimulated inflammatory genes in RAW 264.7 macrophages, suggesting that cell-to-cell communication via free fatty acids might be a cause of adipose inflammation in Ogt-FKO mice. In conclusion, O-GlcNAcylation is important for healthy adipose expansion in mice. Glucose flux into adipose tissues may be a signal to store excess energy as fat.
    Keywords:  O-GlcNAcylation; adipose inflammation; insulin resistance; leptin; obesity
    DOI:  https://doi.org/10.1152/ajpendo.00263.2022
  3. Biotechniques. 2023 May 26.
      High-quality RNA isolation from recalcitrant adipose tissue with high lipid content and low cell numbers is difficult. Many studies have made efforts to optimize methods for isolating RNA from adipose tissue through combinations of column-based kits and phenol-chloroform methods, or through in-house protocols. However, the considerable complexity of these protocols and the various kits/materials required hamper their wide use. Herein, we describe an optimized protocol based on TRIzol reagent, which is the most accessible ready-to-use reagent for nucleic acid and/or protein isolation in laboratories. This article provides a step-by-step protocol yielding sufficient and qualified RNA from lipid-rich specimens for downstream applications.
    Keywords:  Adipose tissue; RNA integrity; RNA isolation; TRIzol
    DOI:  https://doi.org/10.2144/btn-2022-0120
  4. Clin Sci (Lond). 2023 May 31. 137(10): 807-821
      Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.
    Keywords:  Antibody production; B Cell; Glucose; Glutamine; Immunometabolism; Leucocyte
    DOI:  https://doi.org/10.1042/CS20220869
  5. Biomedicines. 2023 May 10. pii: 1412. [Epub ahead of print]11(5):
      The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
    Keywords:  adipogenesis; basement membrane; collagen; diabetes; dyslipidemia; extracellular matrix; fibronectin; fibrosis; lipodystrophy; obesity
    DOI:  https://doi.org/10.3390/biomedicines11051412
  6. J Autoimmun. 2023 May 20. pii: S0896-8411(23)00057-4. [Epub ahead of print]138 103048
      Metabolic reprogramming plays a pivotal role in the differentiation and function of immune cells including dendritic cells (DCs). Regulatory DCs can be generated in regional tissue niches like splenic stroma and act as an important part of stromal control of immune response for the maintenance of immune tolerance. However, the metabolic alterations during splenic stroma-driven regulatory DCs differentiation and the metabolic enzyme involved in regulatory DCs function remain poorly understood. By combining metabolomic, transcriptomic, and functional investigations of mature DCs (maDCs) and diffDCs (regulatory DCs differentiated from activated mature DCs through coculturing with splenic stroma), here we identified succinate-CoA ligase subunit beta Suclg2 as a key metabolic enzyme that reprograms the proinflammatory status of mature DCs into a tolerogenic phenotype via preventing NF-κB signaling activation. diffDCs downregulate succinic acid levels and increase the Suclg2 expression along with their differentiation from mature DCs. Suclg2-interference impaired the tolerogenic function of diffDCs in inducing T cell apoptosis and enhanced activation of NF-κB signaling and expression of inflammatory genes CD40, Ccl5, and Il12b in diffDCs. Furthermore, we identified Lactb as a new positive regulator of NF-κB signaling in diffDCs whose succinylation at the lysine 288 residue was inhibited by Suclg2. Our study reveals that the metabolic enzyme Suclg2 is required to maintain the immunoregulatory function of diffDCs, adding mechanistic insights into the metabolic regulation of DC-based immunity and tolerance.
    Keywords:  Lactb; Metabolic reprogramming; Regulatory dendritic cells; Succinic acid; Succinylation; Suclg2; T cell apoptosis; diffDCs
    DOI:  https://doi.org/10.1016/j.jaut.2023.103048
  7. Biomolecules. 2023 Apr 29. pii: 770. [Epub ahead of print]13(5):
      This study investigated the critical role of Glut1-mediated glucose metabolism in the inflammatory response of macrophages, which are energy-intensive cells within the innate immune system. Inflammation leads to increased Glut1 expression, ensuring sufficient glucose uptake to support macrophage functions. We demonstrated that using siRNA to knock down Glut1 reduces the expression of various pro-inflammatory cytokines and markers, such as IL-6, iNOS, MHC II/CD40, reactive oxygen species, and the hydrogen sulfide (H2S)-producing enzyme cystathionine γ-lyase (CSE). Glut1 activates a pro-inflammatory profile through a nuclear factor (NF)-κB, while silencing Glut1 can prevent lipopolysaccharide (LPS)-induced IκB degradation, blocking NF-κB activation. Glut1's role in autophagy, an essential process for macrophage functions such as antigen presentation, phagocytosis, and cytokine secretion, was also measured. The findings show that LPS stimulation decreases autophagosome formation, but Glut1 knockdown reverses this effect, increasing autophagy beyond control levels. The study highlights Glut1's importance in macrophage immune responses and its regulation of apoptosis during LPS stimulation. Knocking down Glut1 negatively impacts cell viability and mitochondrial intrinsic pathway signaling. These findings collectively suggest that targeting macrophage glucose metabolism through Glut1 could potentially serve as a target for controlling inflammation.
    Keywords:  Glut 1; autophagy; hydrogen sulfide; inflammation; macrophage
    DOI:  https://doi.org/10.3390/biom13050770
  8. Nat Metab. 2023 May 25.
      Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
    DOI:  https://doi.org/10.1038/s42255-023-00804-z
  9. Front Immunol. 2023 ;14 1186892
      A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.
    Keywords:  G-protein-coupled receptor; adaptive immunity; histone deacetylase; innate immunity; short-chain fatty acid
    DOI:  https://doi.org/10.3389/fimmu.2023.1186892
  10. bioRxiv. 2023 May 08. pii: 2023.05.07.539780. [Epub ahead of print]
      Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.
    DOI:  https://doi.org/10.1101/2023.05.07.539780
  11. Nat Cell Biol. 2023 May 25.
      Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.
    DOI:  https://doi.org/10.1038/s41556-023-01152-6
  12. Int Immunopharmacol. 2023 May 19. pii: S1567-5769(23)00594-5. [Epub ahead of print]120 110272
      Innate lymphoid cells (ILCs) have been a hot topic in recent research, they are widely distributed in vivo and play an important role in different tissues. The important role of group 2 innate lymphoid cells (ILC2s) in the conversion of white fat into beige fat has attracted widespread attention. Studies have shown that ILC2s regulate adipocyte differentiation and lipid metabolism. This article reviews the types and functions of ILCs, focusing on the relationship between differentiation, development and function of ILC2s, and elaborates on the relationship between peripheral ILC2s and browning of white fat and body energy homeostasis. This has important implications for the future treatment of obesity and related metabolic diseases.
    Keywords:  Browning of white fat; ILC2s; ILCs; Obesity
    DOI:  https://doi.org/10.1016/j.intimp.2023.110272
  13. J Endocrinol. 2023 May 01. pii: JOE-23-0027. [Epub ahead of print]
      Obesity is associated with a higher risk of severe COVID-19 and increased mortality. In the current study, we have investigated the expression of ACE2, NRP1, and HMGB1, known to facilitate SARS-CoV-2 cell entry, in adipose tissue from non-COVID-19 control patients with normal weight, overweight and obesity. All factors were expressed, but no significant differences between the groups were observed. Furthermore, diabetes status and medications did not affect the expression of ACE2. Only in obese men, the expression of ACE2 in adipose tissue was higher than in obese women. In adipose tissue from patients that died from COVID-19, SARS-CoV-2 was detected in the adipocytes even though the patients died more than three weeks after the acute infection. This suggests that adipocytes may act as reservoirs for the virus. In COVID-19 patients, the expression of NRP1 was increased in COVID-19 patients with overweight and obesity. Furthermore, we observed an increased infiltration with macrophages in the COVID-19 adipose tissues compared to control adipose tissue. In addition, crown-like structures of dying adipocytes surrounded by macrophages were observed in the adipose tissue from COVID-19 patients. These data suggest that in obese individuals, in addition to an increased mass of adipose tissue that could potentially be infected, increased macrophage infiltration due to direct infection with SARS-CoV-2 and sustained viral shedding, rather than preinfection ACE2 receptor expression, may be responsible for the increased severity and mortality of COVID-19 in patients with obesity.
    DOI:  https://doi.org/10.1530/JOE-23-0027
  14. Cancer Immunol Res. 2023 May 22. pii: CIR-22-0593. [Epub ahead of print]
      Stromal fibroblasts reside in inflammatory tissues that are characterized by either immune suppression or activation. Whether and how fibroblasts adapt to these contrasting microenvironments remains unknown. Cancer-associated fibroblasts (CAFs) mediate immune quiescence by producing the chemokine CXCL12, which coats cancer cells to suppress T-cell infiltration. We examined whether CAFs can also adopt an immune-promoting chemokine profile. Single-cell RNA-sequencing of CAFs from mouse pancreatic adenocarcinomas identified a sub-population of CAFs with decreased expression of Cxcl12 and increased expression of the T cell-attracting chemokine Cxcl9 in association with T-cell infiltration. TNFα and IFNγ containing conditioned media from activated CD8+ T cells converted stromal fibroblasts from a CXCL12+/CXCL9- immune suppressive phenotype into a CXCL12-/CXCL9+ immune-activating phenotype. Recombinant IFNγ and TNFα acted together to augment CXCL9 expression, whereas TNFα alone suppressed CXCL12 expression. This coordinated chemokine switch led to increased T-cell infiltration in an in vitro chemotaxis assay. Our study demonstrates that CAFs have a phenotypic plasticity that allows their adaptation to contrasting immune tissue microenvironments.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-22-0593
  15. J Leukoc Biol. 2023 May 26. pii: qiad062. [Epub ahead of print]
      Human monocyte-derived dendritic cells (moDCs) develop from monocytes play a key role in innate inflammatory responses as well as T-cell priming. Steady-state moDCs regulate immunogenicity and tolerogenicity by changing metabolic patterns to participate in the body's immune response. Increased glycolytic (Gly) metabolism after danger signal induction may strengthen moDCs' immunogenicity, whereas high levels of mitochondrial oxidative phosphorylation (OXPHOS) were associated with the immaturity and tolerogenicity of moDCs. In this review, we will discuss what is currently known about differential metabolic reprogramming of human moDCs development and distinct functional properties.
    Keywords:  glycolysis; immunogenicity; metabolism; moDCs; oxidative phosphorylation; tolerogenicity
    DOI:  https://doi.org/10.1093/jleuko/qiad062
  16. Res Sq. 2023 May 10. pii: rs.3.rs-2838359. [Epub ahead of print]
      Modulation of metabolic flux through pyruvate dehydrogenase complex (PDC) plays an important role in T cell activation and differentiation. PDC sits at the transition between glycolysis and the tricarboxylic acid cycle and is a major producer of acetyl-CoA, marking it as a potential metabolic and epigenetic node. To understand the role of pyruvate dehydrogenase complex in T cell differentiation, we generated mice deficient in T cell pyruvate dehydrogenase E1A ( Pdha ) subunit using a CD4-cre recombinase-based strategy. Herein, we show that genetic ablation of PDC activity in T cells ( TPdh -/- ) leads to marked perturbations in glycolysis, the tricarboxylic acid cycle, and OXPHOS. TPdh -/- T cells became dependent upon substrate level phosphorylation via glycolysis, secondary to depressed OXPHOS. Due to the block of PDC activity, histone acetylation was also reduced, including H3K27, a critical site for CD8 + T M differentiation. Transcriptional and functional profiling revealed abnormal CD8 + T M differentiation in vitro. Collectively, our data indicate that PDC integrates the metabolome and epigenome in CD8 + memory T cell differentiation. Targeting this metabolic and epigenetic node can have widespread ramifications on cellular function.
    DOI:  https://doi.org/10.21203/rs.3.rs-2838359/v1