Mol Immunol. 2025 Mar 17. pii: S0161-5890(25)00074-4. [Epub ahead of print]181 75-83
Previous research has demonstrated that Dock2 deficiency results in a reduction in both the quantity and proliferation rate of T cells, thereby heightening the host's vulnerability to various infections. Nevertheless, the impact of DOCK2 on T cell activation remains unexplored. In this study, we employed flow cytometry to assess the activation phenotype of T cells in the peripheral lymphoid tissues of wild-type (Dock2+/+), DOCK2 heterozygous (Dock2+/-) and DOCK2 knockout (Dock2-/-) mice. Our findings revealed that, in comparison to Dock2+/+ mice, Dock2-/- mice exhibited increased expression levels of CD44 and CD69 on CD4+ and/or CD8+ T cells within spleen and mesenteric lymph nodes (MLN). Additionally, there was a significant elevation in the proportions of IFN-γ+/CD4+, IFN-γ+/CD8+ and IL-4+/CD8+ T cells. Furthermore, the percentage of IL-17a+/CD4+ and IL-17a+/CD8+ T cells in the MLN of Dock2-/- mice was higher than that observed in Dock2+/+ mice. These results suggest that Dock2 deficiency induces aberrant T cell activation in peripheral lymphoid tissues. To further investigate the underlying mechanisms of this phenomenon, we conducted transcriptome sequencing on CD8+ T cells collected from all groups of mice. The results indicate that Ccr2 and Ifng are potentially pivotal genes involved in the aberrant activation of T cells in Dock2-/- mice. These findings contribute to elucidating the host defense mechanisms against foreign pathogens and advance our comprehension of the role of cytoskeleton-related proteins in the regulation of cellular immunity.
Keywords: Activation; Dock2; Inflammation