bims-actimu Biomed News
on Actinopathies in inborn errors of immunity
Issue of 2024–11–03
three papers selected by
Elodie Busch, University of Strasbourg



  1. bioRxiv. 2024 Oct 22. pii: 2024.10.20.619331. [Epub ahead of print]
      Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mis-localized deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
    DOI:  https://doi.org/10.1101/2024.10.20.619331
  2. Int J Cancer. 2024 Oct 29.
      The ARP2/3 complex, which orchestrates actin cytoskeleton organization and lamellipodia formation, has been implicated in the initiation of pancreatic ductal adenocarcinoma (PDAC). This study aims to clarify its impact on the activity of cancer-associated fibroblasts (CAFs), key players in PDAC progression, and patient outcomes. Early pancreatic carcinogenesis was modeled in p48Cre; LSL-KrasG12D mice with caerulein-induced pancreatitis, complemented by in vitro studies on human immortalized pancreatic stellate cells (PSCs) and primary PDAC-derived CAFs. Data were gained from microarray analysis, RNA sequencing (RNA-seq), and single-cell RNA sequencing (sc-RNA-seq), with subsequent bioinformatics analysis. We uncovered a specific transcriptional signature associated with fibroblast migration in early pancreatic carcinogenesis and linked it to poor survival in patients with PDAC. A pivotal role of the ARP2/3 complex in CAF migration was identified. Inhibition of the ARP2/3 complex markedly decreased CAF motility and induced significant morphological changes in vitro. Furthermore, its inhibition also hindered TGFβ1-mediated myofibroblastic CAF differentiation but had no effect on IL-1-mediated inflammatory CAF differentiation. Our findings position the ARP2/3 complex as central to the migration and differentiation of myofibroblastic CAF. Targeting this complex presents a promising new therapeutic avenue for PDAC treatment.
    Keywords:  cancer‐associated fibroblasts; myCAFs; pancreatic carcinogenesis; transcriptional signature; transforming growth factor β
    DOI:  https://doi.org/10.1002/ijc.35246
  3. Biomedicines. 2024 Oct 15. pii: 2341. [Epub ahead of print]12(10):
       BACKGROUND: Radixin is an ERM family protein that includes radixin, moesin, and ezrin. The importance of ERM family proteins has been attracting more attention, and studies on the roles of ERM in biological function and the pathogenesis of some diseases are accumulating. In particular, we have found that radixin is the most dramatically changed ERM protein in elevated glucose-treated Schwann cells.
    METHOD: We systemically review the literature on ERM, radixin in focus, and update the roles of radixin in regulating cell morphology, interaction, and cell signaling pathways. The potential of radixin as a therapeutic target in neurodegenerative diseases and cancer was also discussed.
    RESULTS: Radixin research has focused on its cell functions, activation, and pathogenic roles in some diseases. Radixin and other ERM proteins maintain cell shape, growth, and motility. In the nervous system, radixin has been shown to prevent neurodegeneration and axonal growth. The activation of radixin is through phosphorylation of its conserved threonine residues. Radixin functions in cell signaling pathways by binding to membrane proteins and relaying the cell signals into the cells. Deficiency of radixin has been involved in the pathogenic process of diseases in the central nervous system and diabetic peripheral nerve injury. Moreover, radixin also plays a role in cell growth and drug resistance in multiple cancers. The trials of therapeutic potential through radixin modulation have been accumulating. However, the exact mechanisms underlying the roles of radixin are far from clarification.
    CONCLUSIONS: Radixin plays various roles in cells and is involved in developing neurodegenerative diseases and many types of cancers. Therefore, radixin may be considered a potential target for developing therapeutic strategies for its related diseases. Further elucidation of the function and the cell signaling pathways that are linked to radixin may open the avenue to finding novel therapeutic strategies for diseases in the nervous system and other body systems.
    Keywords:  ERM; cancer; neurodegeneration; peripheral nerve injury; phosphorylation; radixin
    DOI:  https://doi.org/10.3390/biomedicines12102341