Immunol Res. 2024 Jul 17.
Rabab El Hawary,
Safa Meshaal,
Sohilla Lotfy,
Dalia Abd Elaziz,
Alia S Eldash,
Aya Erfan,
Radwa Alkady,
Rania Darwish,
Mai Saad,
Engy Chohayeb,
Nermeen Galal,
Aisha M Elmarsafy.
Inborn errors of the CARD11-BCL10-MALT1 (CBM) signalosome have recently been shown to underlie severe combined immunodeficiency (SCID) and combined immunodeficiency (CID) with variable immunological and clinical phenotypes, and patients usually present with recurrent bacterial, viral, and fungal infections, periodontal disease, enteropathy, dermatitis, and failure to thrive. In the present study, we describe the clinical and immunological characteristics of an Egyptian patient with a mutation in the MALT1 gene. The patient suffered from an itchy exfoliative skin rash and eczematous lesions over his face and flexural surface of the limbs. He also had dental enamel erosion, repeated attacks of diarrhea, and pneumonia. He had elevated serum IgE and normal B- and T-lymphocyte subset counts, but there was an arrest in the B-cell maturation. DOCK8 expression on the lymphocytes by flow cytometry was normal. Next-generation sequencing revealed a novel homozygous variant in the MALT1 gene (c.762dup in exon 5 of 17; p.Ile255TyrfsTer10); this variant is likely pathogenic, thus supporting the genetic diagnosis of immunodeficiency-12 (IMD12). Although the presence of eczema, recurrent sinopulmonary, and staphylococcal infections are suggestive of DOCK8 deficiency, they are also a finding in CARD11 and MALT1 deficiency. Thus, whenever DOCK 8 has been excluded, the molecular diagnosis is mandatory as this could lead to discovering more patients hence better understanding and reporting of the phenotype and natural history of the disease especially since there are very few documented cases. Early diagnosis will also enable the proper patient management by hematopoietic stem cell transplantation (HSCT) prior to the establishment of infections and pulmonary damage leading to a better outcome.
Keywords: Combined immunodeficiency; Eczema; MALT1; next-generation sequencing