J Immunol. 2024 Feb 05. pii: ji2300671. [Epub ahead of print]
Abigail E Reed,
Jackeline Peraza,
Frederique van den Haak,
Evelyn R Hernandez,
Richard A Gibbs,
Ivan K Chinn,
James R Lupski,
Enrica Marchi,
Ran Reshef,
Bachir Alobeid,
Emily M Mace,
Jordan S Orange.
NK cell deficiency (NKD) occurs when an individual's major clinical immunodeficiency derives from abnormal NK cells and is associated with several genetic etiologies. Three categories of β-actin-related diseases with over 60 ACTB (β-actin) variants have previously been identified, none with a distinct NK cell phenotype. An individual with mild developmental delay, macrothrombocytopenia, and susceptibility to infections, molluscum contagiosum virus, and EBV-associated lymphoma had functional NKD for over a decade. A de novo ACTB variant encoding G342D β-actin was identified and was consistent with the individual's developmental and platelet phenotype. This novel variant also was found to have direct impact in NK cells because its expression in the human NK cell line YTS (YTS-NKD) caused increased cell spreading in lytic immune synapses created on activating surfaces. YTS-NKD cells were able to degranulate and perform cytotoxicity, but they demonstrated defective serial killing because of prolonged conjugation to the killed target cell and thus were effectively unable to terminate lytic synapses. G342D β-actin results in a novel, to our knowledge, mechanism of functional NKD via increased synaptic spreading and defective lytic synapse termination with resulting impaired serial killing, leading to overall reductions in NK cell cytotoxicity.