bims-unfpre Biomed News
on Unfolded protein response
Issue of 2021‒03‒07
fourteen papers selected by
Susan Logue
University of Manitoba

  1. Bio Protoc. 2019 Jul 20. 9(14): e3307
      The kinase/RNase IRE1 is a key effector of the cellular response to endoplasmic reticulum stress. The RNase activity of IRE1 can be measured in cells or in the test tube. Here we describe a protocol for the in vitro cleavage and analysis of RNA substrates of IRE1. The method consists of the in vitro transcription, purification and re-folding of IRE1 substrate RNAs followed by their cleavage using recombinant cytosolic kinase/RNase domains of IRE1 and the separation of the resulting fragments by denaturing polyacrylamide gel electrophoresis. This protocol allows the study of the cleavage kinetics of IRE1's RNA substrates in vitro.
    Keywords:  ER stress; IRE1; RNA cleavage; Regulated IRE1-dependent decay; Unfolded protein response; XBP1
  2. Biomolecules. 2021 Feb 26. pii: 354. [Epub ahead of print]11(3):
      With the extension of life span in recent decades, there is an increasing burden of late-onset neurodegenerative diseases, for which effective treatments are lacking. Neurodegenerative diseases include the widespread Alzheimer's disease (AD) and Parkinson's disease (PD), the less frequent Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) and also rare early-onset diseases linked to mutations that cause protein aggregation or loss of function in genes that maintain protein homeostasis. The difficulties in applying gene therapy approaches to tackle these diseases is drawing increasing attention to strategies that aim to inhibit cellular toxicity and restore homeostasis by intervening in cellular pathways. These include the unfolded protein response (UPR), activated in response to endoplasmic reticulum (ER) stress, a cellular affliction that is shared by these diseases. Special focus is turned to the PKR-like ER kinase (PERK) pathway of the UPR as a target for intervention. However, the complexity of the pathway and its ability to promote cell survival or death, depending on ER stress resolution, has led to some confusion in conflicting studies. Both inhibition and activation of the PERK pathway have been reported to be beneficial in disease models, although there are also some reports where they are counterproductive. Although with the current knowledge a definitive answer cannot be given on whether it is better to activate or to inhibit the pathway, the most encouraging strategies appear to rely on boosting some steps without compromising downstream recovery.
    Keywords:  ALS; Alzheimer’s disease; ER stress; Huntington’s disease; Parkinson’s disease; eIF2; integrated stress response; unfolded protein response
  3. Int J Mol Sci. 2021 Feb 22. pii: 2161. [Epub ahead of print]22(4):
      The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and transport of secretory and membrane proteins. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and an unfolded protein response. Emerging evidence has shown that ER stress or the derangement of ER proteostasis contributes to the development and progression of a variety of glomerular and tubular diseases. This review gives a comprehensive summary of studies that have elucidated the role of the three ER stress signaling pathways, including inositol-requiring enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling in the pathogenesis of kidney disease. In addition, we highlight the recent discovery of ER-associated biomarkers, including MANF, ERdj3, ERdj4, CRELD2, PDIA3, and angiogenin. The implementation of these novel biomarkers may accelerate early diagnosis and therapeutic intervention in rare kidney disease.
    Keywords:  biomarkers; endoplasmic reticulum; kidney disease
  4. Int J Mol Sci. 2021 Feb 11. pii: 1799. [Epub ahead of print]22(4):
      Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
    Keywords:  endoplasmic reticulum stress; hepatocellular carcinoma; unfolded protein response
  5. Expert Rev Mol Med. 2021 Mar 04. 23 e1
      Unfolded protein response (UPR) is an evolutionarily conserved pathway triggered during perturbation of endoplasmic reticulum (ER) homeostasis in response to the accumulation of unfolded/misfolded proteins under various stress conditions like viral infection, diseased states etc. It is an adaptive signalling cascade with the main purpose of relieving the stress from the ER, which may otherwise lead to the initiation of cell death via apoptosis. ER stress if prolonged, contribute to the aetiology of various diseases like cancer, type II diabetes, neurodegenerative diseases, viral infections etc. Understanding the role of UPR in disease progression will help design pharmacological drugs targeting the sensors of signalling cascade acting as potential therapeutic agents against various diseases. The current review aims at highlighting the relevance of different pathways of UPR in disease progression and control, including the available pharmaceutical interventions responsible for ameliorating diseased state via modulating UPR pathways.
    Keywords:  Cancer; ER stress; neurodegenerative diseases; therapeutic intervention; type II diabetes; unfolded protein response pathways; viral infection
  6. J Cell Mol Med. 2021 Mar 06.
      Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2 S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2 S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2 S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2 S. H2 S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2 S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2 S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.
    Keywords:  atherosclerosis; endoplasmic reticulum stress; homocysteine; hydrogen sulphide; protein disulphide isomerase; sulfhydration
  7. Am J Physiol Heart Circ Physiol. 2021 Mar 05.
      While peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by chemical and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia/reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress-sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.
    Keywords:  ATF6; Cardiac Myocyte; ER Stress; Peroxisome
  8. JCI Insight. 2021 Mar 04. pii: 143980. [Epub ahead of print]
      Secretory protein misfolding has been linked to ER stress and cell death. We expressed a TGrdw transgene encoding TG-G(2298)R, a misfolded mutant thyroglobulin reported to be linked to thyroid cell death. When the TGrdw transgene was expressed at low-level in thyrocytes of TGcog/cog mice that experience severe ER stress, we observed increased thyrocyte cell death and increased expression of CIDE-A (Cell death-inducing DFFA-like effector-A, a protein of lipid droplets) in whole thyroid gland. Here we demonstrate that acute ER stress in cultured PCCL3 thyrocytes increases Cidea mRNA levels, maintained at least in part by increased mRNA stability, while being negatively regulated by ATF6 - with similar observations other cell types. CIDE-A protein is sensitive to proteasomal degradation yet is stabilized by ER stress, and elevated expression levels accompany increased cell death. Unlike acute ER stress, PCCL3 cells adapted and surviving chronic ER stress maintain a disproportionately lower relative mRNA level of Cidea compared to that of other, classical ER stress markers, as well as a blunted Cidea mRNA response to a new, unrelated acute ER stress challenge. We suggest that CIDE-A is a novel marker linked to a non-canonical ER stress-response program, with implications for cell death and survival.
    Keywords:  Cell stress; Endocrinology; Protein misfolding; Protein traffic
  9. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2026608118. [Epub ahead of print]118(10):
      Intracellular procollagen folding begins at the protein's C-terminal propeptide (C-Pro) domain, which initiates triple-helix assembly and defines the composition and chain register of fibrillar collagen trimers. The C-Pro domain is later proteolytically cleaved and excreted from the body, while the mature triple helix is incorporated into the extracellular matrix. The procollagen C-Pro domain possesses a single N-glycosylation site that is widely conserved in all the fibrillar procollagens across humans and diverse other species. Given that the C-Pro domain is removed once procollagen folding is complete, the N-glycan might be presumed to be important for folding. Surprisingly, however, there is no difference in the folding and secretion of N-glycosylated versus non-N-glycosylated collagen type-I, leaving the function of the N-glycan unclear. We hypothesized that the collagen N-glycan might have a context-dependent function, specifically, that it could be required to promote procollagen folding only when proteostasis is challenged. We show that removal of the N-glycan from misfolding-prone C-Pro domain variants does indeed cause serious procollagen and ER proteostasis defects. The N-glycan promotes folding and secretion of destabilized C-Pro variants by providing access to the ER's lectin-based chaperone machinery. Finally, we show that the C-Pro N-glycan is actually critical for the folding and secretion of even wild-type procollagen under ER stress conditions. Such stress is commonly incurred during development, wound healing, and other processes in which collagen production plays a key role. Collectively, these results establish an essential, context-dependent function for procollagen's previously enigmatic N-glycan, wherein the carbohydrate moiety buffers procollagen folding against proteostatic challenge.
    Keywords:  ER protein folding; N-glycosylation; calnexin and calreticulin; collagen folding and proteostasis; extracellular matrix biosynthesis
  10. Cell Immunol. 2021 Feb 12. pii: S0008-8749(21)00031-9. [Epub ahead of print]363 104312
      Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
    Keywords:  Cancer; ER stress; Immunotherapy; MDSC
  11. Front Med (Lausanne). 2020 ;7 613518
      Introduction: Endoplasmic reticulum stress (ERS) is involved in inflammatory organ failure. Our objective was to describe ERS, its unfolded protein response (UPR) expression/kinetics during cardiac surgery with cardiopulmonary bypass (CPB) and its association with postoperative organ failure (OF). Methods: Prospective study conducted on patients undergoing cardiac surgery with CPB. Blood samples were taken before (Pre-CPB), 2 h (H2-CPB) and 24 h (H24-CPB) after CPB. Plasma levels of 78 kDa Glucose- Regulated Protein (GRP78, final effector of UPR) were evaluated by ELISA. The expression of genes coding for key elements of UPR (ATF6, ATF4, sXBP1, CHOP) was evaluated by quantitative PCR performed on total blood. OF was defined as invasive mechanical ventilation and/or acute kidney injury and/or hemodynamic failure requiring catecholamines. Results: We included 46 patients, GRP78 was decreased at H2-CPB [1,328 (878-1,730) ng/ml vs. 2,348 (1,655-3,730) ng/ml Pre-CPB; p < 0.001] but returned to basal levels at H24-CPB [2,068 (1,436-3,005) ng/ml]. The genes involved in UPR had increased expression at H2 and H24. GRP78 plasma levels in patients with OF at H24-CPB (n = 10) remained below Pre-CPB levels [-27.6 (-51.5; -24.2)%] compared to patients without OF (n = 36) in whom GRP78 levels returned to basal levels [0.6 (-28.1; 26.6)%; p < 0.01]. H24-CPB ATF6 and CHOP expressions were lower in patients with OF than in patients without OF [2.3 (1.3-3.1) vs. 3.0 (2.7-3.7), p < 0.05 and 1.3 (0.9-2.0) vs. 2.2 (1.7-2.9), p < 0.05, respectively]. Conclusions: Low relative levels of GRP78 and weak UPR gene expression appeared associated with postoperative OF. Further studies are needed to understand ERS implication during acute organ failure in humans.
    Keywords:  GRP78 protein; bypass; cardiac surgery; cardiopulmonary; endoplasmic reticulum stress; endothelium; human; inflammation
  12. PLoS Pathog. 2021 Mar 04. 17(3): e1009370
      The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.
  13. Biochem J. 2021 Mar 02. pii: BCJ20200984. [Epub ahead of print]
      Here, we investigated transcriptional and trafficking mechanisms of human islet amyloid polypeptide (hIAPP) in normal and stressed β-cells. In high glucose-challenged human islets and rat insulinoma cells overexpressing hIAPP, cell fractionation studies revealed increased accumulation of hIAPP. Unexpectedly, a significant fraction (up to 22%) of hIAPP was found in the nuclear soluble and chromatin-enriched fractions of cultured human islet and rat insulinoma cells. The nucleolar accumulation of monomeric forms of hIAPP did not have any adverse effect on the proliferation of β-cells nor did it affect nucleolar organization or function. However, intact nucleolar organization and function were essential for hIAPP expression under normal and ER-stress conditions as RNA polymerase II inhibitor, α-amanitin, reduced hIAPP protein expression evoked by high glucose and thapsigargin. Promoter activity studies revealed the essential role of transcription factor FoxA2 in hIAPP promoter activation in ER-stressed β-cells. Transcriptome and secretory studies demonstrate that the biosynthetic and secretory capacity of islet β-cells was preserved during ER stress. Thus, the main reason for increased intracellular hIAPP accumulation is its enhanced biosynthesis under these adverse conditions.
    Keywords:  ER Stress; FoxA2; Islet amyloid polypeptide; nucleolus; trafficking; transcription
  14. Sci Rep. 2021 Mar 01. 11(1): 4852
      To develop antitumor drugs capable of targeting energy metabolism in the tumor microenvironment, we produced a series of potent new biguanide derivatives via structural modification of the arylbiguanide scaffold. We then conducted biological screening using hypoxia inducible factor (HIF)-1- and unfolded protein response (UPR)-dependent reporter assays and selective cytotoxicity assay under low glucose conditions. Homologation studies of aryl-(CH2)n-biguanides (n = 0-6) yielded highly potent derivatives with an appropriate alkylene linker length (n = 5, 6). The o-chlorophenyl derivative 7l (n = 5) indicated the most potent inhibitory effects on HIF-1- and UPR-mediated transcriptional activation (IC50; 1.0 ± 0.1 μM, 7.5 ± 0.1 μM, respectively) and exhibited selective cytotoxicity toward HT29 cells under low glucose condition (IC50; 1.9 ± 0.1 μM). Additionally, the protein expression of HIF-1α induced by hypoxia and of GRP78 and GRP94 induced by glucose starvation was markedly suppressed by the biguanides, thereby inhibiting angiogenesis. Metabolic flux and fluorescence-activated cell sorting analyses of tumor cells revealed that the biguanides strongly inhibited oxidative phosphorylation and activated compensative glycolysis in the presence of glucose, whereas both were strongly suppressed in the absence of glucose, resulting in cellular energy depletion and apoptosis. These findings suggest that the pleiotropic effects of these biguanides may contribute to more selective and effective killing of cancer cells due to the suppression of various stress adaptation systems in the tumor microenvironment.