bims-unfpre Biomed News
on Unfolded protein response
Issue of 2020‒12‒06
ten papers selected by
Susan Logue
University of Manitoba


  1. Proc Natl Acad Sci U S A. 2020 Nov 30. pii: 202018138. [Epub ahead of print]
    Sabath N, Levy-Adam F, Younis A, Rozales K, Meller A, Hadar S, Soueid-Baumgarten S, Shalgi R.
      Proteostasis collapse, the diminished ability to maintain protein homeostasis, has been established as a hallmark of nematode aging. However, whether proteostasis collapse occurs in humans has remained unclear. Here, we demonstrate that proteostasis decline is intrinsic to human senescence. Using transcriptome-wide characterization of gene expression, splicing, and translation, we found a significant deterioration in the transcriptional activation of the heat shock response in stressed senescent cells. Furthermore, phosphorylated HSF1 nuclear localization and distribution were impaired in senescence. Interestingly, alternative splicing regulation was also dampened. Surprisingly, we found a decoupling between different unfolded protein response (UPR) branches in stressed senescent cells. While young cells initiated UPR-related translational and transcriptional regulatory responses, senescent cells showed enhanced translational regulation and endoplasmic reticulum (ER) stress sensing; however, they were unable to trigger UPR-related transcriptional responses. This was accompanied by diminished ATF6 nuclear localization in stressed senescent cells. Finally, we found that proteasome function was impaired following heat stress in senescent cells, and did not recover upon return to normal temperature. Together, our data unraveled a deterioration in the ability to mount dynamic stress transcriptional programs upon human senescence with broad implications on proteostasis control and connected proteostasis decline to human aging.
    Keywords:  UPR; chaperones; heat shock response; protein homeostasis; senescence
    DOI:  https://doi.org/10.1073/pnas.2018138117
  2. Stem Cell Res Ther. 2020 Nov 30. 11(1): 516
    Zhang D, De Veirman K, Fan R, Jian Q, Zhang Y, Lei L, Evans H, Wang Y, Lei L, Wang B, Williamson RA, Chantry A, He P, Li A, De Raeve H, Vanderkerken K, He A, Hu J.
      BACKGROUND: Bone destruction is a hallmark of multiple myeloma (MM). It has been reported that proteasome inhibitors (PIs) can reduce bone resorption and increase bone formation in MM patients, but the underlying mechanisms remain unclear.METHODS: Mesenchymal stem cells (MSCs) were treated with various doses of PIs, and the effects of bortezomib or carfilzomib on endoplasmic reticulum (ER) stress signaling pathways were analyzed by western blotting and real-time PCR. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to determine the osteogenic differentiation in vitro. Specific inhibitors targeting different ER stress signaling and a Tet-on inducible overexpressing system were used to validate the roles of key ER stress components in regulating osteogenic differentiation of MSCs. Chromatin immunoprecipitation (ChIP) assay was used to evaluate transcription factor-promoter interaction. MicroCT was applied to measure the microarchitecture of bone in model mice in vivo.
    RESULTS: We found that both PERK-ATF4 and IRE1α-XBP1s ER stress branches are activated during PI-induced osteogenic differentiation. Inhibition of ATF4 or XBP1s signaling can significantly impair PI-induced osteogenic differentiation. Furthermore, we demonstrated that XBP1s can transcriptionally upregulate ATF4 expression and overexpressing XBP1s can induce the expression of ATF4 and other osteogenic differentiation-related genes and therefore drive osteoblast differentiation. MicroCT analysis further demonstrated that inhibition of XBP1s can strikingly abolish bortezomib-induced bone formation in mouse.
    CONCLUSIONS: These results demonstrated that XBP1s is a master regulator of PI-induced osteoblast differentiation. Activation of IRE1α-XBP1s ER stress signaling can promote osteogenesis, thus providing a novel strategy for the treatment of myeloma bone disease.
    Keywords:  Mesenchymal stem cell; Multiple myeloma; Osteogenic differentiation; Proteasome inhibitor; Xbp1s
    DOI:  https://doi.org/10.1186/s13287-020-02037-3
  3. EMBO Rep. 2020 Dec 03. e51929
    Avril T, Chevet E.
      Endoplasmic reticulum (ER) stress signaling has long been associated with various pathological states in particular with the development of diseases with an underlying inflammation, such as diabetes, liver or cardiovascular dysfunctions, and cancer. ER stress signaling is mediated by three stress sensors. The most evolutionarily conserved one, the inositol-requiring enzyme 1 alpha (IRE1), transduces most of the signals through an endoribonuclease (RNase) activity toward RNAs including mRNAs and microRNAs (miRNAs). By exploring phosphoinositide signaling in human macrophages, Hamid and colleagues discovered a novel function of IRE1 RNase that through the cleavage of pre-miR-2317 generates a mature miR-2317 independently of the canonical Dicer endonuclease to yield specific biological outcomes (Hamid et al, 2020).
    DOI:  https://doi.org/10.15252/embr.202051929
  4. J Hematol Oncol. 2020 Dec 02. 13(1): 163
    Zhao T, Du J, Zeng H.
      To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
    Keywords:  Cancer; ER stress; Interplay; UPR; ncRNAs
    DOI:  https://doi.org/10.1186/s13045-020-01002-0
  5. Biochem Biophys Res Commun. 2020 Nov 30. pii: S0006-291X(20)32135-5. [Epub ahead of print]
    Ramachandran G, Moharir SC, Raghunand TR, Swarup G.
      We have investigated the physiological role of the autophagy receptor Optineurin/Optn in endoplasmic reticulum (ER) stress response using cellular and animal models. In comparison to their normal counterparts, Optn-deficient mouse embryonic fibroblasts showed significantly higher cell death and caspase-3 activation upon treatment with tunicamycin and thapsigargin, inducers of ER stress. The transcript levels of some of the genes regulated by the IRE1-XBP1 and PERK-ATF4 pathways were upregulated in Optn-deficient cells, in comparison with normal cells, upon treatment with tunicamycin, and also in the brain cortex and liver of tunicamycin treated Optn-deficient mice. Also, the basal levels of IRE1α and PERK were higher in Optn-deficient cells. These results suggest that Optn modulates ER stress-induced signaling pathways and provides protection from ER stress-induced cell death.
    Keywords:  Cytoprotection; ER stress Response; IRE1; Optineurin; PERK
    DOI:  https://doi.org/10.1016/j.bbrc.2020.11.091
  6. PLoS Biol. 2020 Dec 02. 18(12): e3000996
    Mao K, Breen P, Ruvkun G.
      RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction.
    DOI:  https://doi.org/10.1371/journal.pbio.3000996
  7. Int J Mol Sci. 2020 Nov 27. pii: E9012. [Epub ahead of print]21(23):
    Cortesi M, Zamagni A, Pignatta S, Zanoni M, Arienti C, Rossi D, Collina S, Tesei A.
      Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.
    Keywords:  ER stress; ROS; UPR; gatekeepers; pancreatic cancer; sigma receptors
    DOI:  https://doi.org/10.3390/ijms21239012
  8. Cell Death Differ. 2020 Dec 04.
    Demmings MD, Tennyson EC, Petroff GN, Tarnowski-Garner HE, Cregan SP.
      Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra resulting in severe and progressive motor impairments. However, the mechanisms underlying this neuronal loss remain largely unknown. Oxidative stress and ER stress have been implicated in PD and these factors are known to activate the integrated stress response (ISR). Activating transcription factor 4 (ATF4), a key mediator of the ISR, and has been reported to induce the expression of genes involved in cellular homeostasis. However, during prolonged activation ATF4 can also induce the expression of pro-death target genes. Therefore, in the present study, we investigated the role of ATF4 in neuronal cell death in models of PD. We demonstrate that PD neurotoxins (MPP+ and 6-OHDA) and α-synuclein aggregation induced by pre-formed human alpha-synuclein fibrils (PFFs) cause sustained upregulation of ATF4 expression in mouse cortical and mesencephalic dopaminergic neurons. Furthermore, we demonstrate that PD neurotoxins induce the expression of the pro-apoptotic factors Chop, Trb3, and Puma in dopaminergic neurons in an ATF4-dependent manner. Importantly, we have determined that PD neurotoxin and α-synuclein PFF induced neuronal death is attenuated in ATF4-deficient dopaminergic neurons. Furthermore, ectopic expression of ATF4 but not transcriptionally defective ATF4ΔRK restores sensitivity of ATF4-deficient neurons to PD neurotoxins. Finally, we demonstrate that the eIF2α kinase inhibitor C16 suppresses MPP+ and 6-OHDA induced ATF4 activation and protects against PD neurotoxin induced dopaminergic neuronal death. Taken together these results indicate that ATF4 promotes dopaminergic cell death induced by PD neurotoxins and pathogenic α-synuclein aggregates and highlight the ISR factor ATF4 as a potential therapeutic target in PD.
    DOI:  https://doi.org/10.1038/s41418-020-00688-6
  9. Sci Rep. 2020 Dec 04. 10(1): 21269
    Tabbarah S, Tavares E, Charish J, Vincent A, Paterson A, Di Scipio M, Yin Y, Mendoza-Londono R, Maynes J, Heon E, Monnier PP.
      Leber congenital amaurosis (LCA), a form of autosomal recessive severe early-onset retinal degeneration, is an important cause of childhood blindness. This may be associated with systemic features or not. Here we identified COG5 compound-heterozygous variants in patients affected with a complex LCA phenotype associated with microcephaly and skeletal dysplasia. COG5 is a component of the COG complex, which facilitates retrograde Golgi trafficking; if disrupted this can result in protein misfolding. To date, variants in COG5 have been associated with a distinct congenital disorder of glycosylation (type IIi) and with a variant of Friedreich's ataxia. We show that COG5 variants can also result in fragmentation of the Golgi apparatus and upregulation of the UPR modulator, PKR-like endoplasmic reticulum kinase (PERK). In addition, upregulation of PERK induces DNA damage in cultured cells and in murine retina. This study identifies a novel role for COG5 in maintaining ER protein homeostasis and that disruption of that role results in activation of PERK and early-onset retinal degeneration, microcephaly and skeletal dysplasia. These results also highlight the importance of the UPR pathway in early-onset retinal dystrophy and as potential therapeutic targets for patients.
    DOI:  https://doi.org/10.1038/s41598-020-77394-3
  10. Proc Natl Acad Sci U S A. 2020 Nov 30. pii: 202005877. [Epub ahead of print]
    Aras S, Purandare N, Gladyck S, Somayajulu-Nitu M, Zhang K, Wallace DC, Grossman LI.
      MNRR1 (CHCHD2) is a bi-organellar regulator of mitochondrial function that directly activates cytochrome c oxidase in the mitochondria and functions in the nucleus as a transcriptional activator for hundreds of genes. Since MNRR1 depletion contains features of a mitochondrial disease phenotype, we evaluated the effects of forced expression of MNRR1 on the mitochondrial disease MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. MELAS is a multisystem encephalomyopathy disorder that can result from a heteroplasmic mutation in the mitochondrial DNA (mtDNA; m.3243A > G) at heteroplasmy levels of ∼50 to 90%. Since cybrid cell lines with 73% m.3243A > G heteroplasmy (DW7) display a significant reduction in MNRR1 levels compared to the wild type (0% heteroplasmy) (CL9), we evaluated the effects of MNRR1 levels on mitochondrial functioning. Overexpression of MNRR1 in DW7 cells induces the mitochondrial unfolded protein response (UPRmt), autophagy, and mitochondrial biogenesis, thereby rescuing the mitochondrial phenotype. It does so primarily as a transcription activator, revealing this function to be a potential therapeutic target. The role of MNRR1 in stimulating UPRmt, which is blunted in MELAS cells, was surprising and further investigation uncovered that under conditions of stress the import of MNRR1 into the mitochondria was blocked, allowing the protein to accumulate in the nucleus to enhance its transcription function. In the mammalian system, ATF5, has been identified as a mediator of UPRmt MNRR1 knockout cells display an ∼40% reduction in the protein levels of ATF5, suggesting that MNRR1 plays an important role upstream of this known mediator of UPRmt.
    Keywords:  CHCHD2; cytochrome c oxidase; mitochondria; transcription; unfolded protein response
    DOI:  https://doi.org/10.1073/pnas.2005877117