bims-unfpre Biomed News
on Unfolded protein response
Issue of 2020‒07‒19
eight papers selected by
Susan Logue
University of Manitoba

  1. Cancer Lett. 2020 Jul 14. pii: S0304-3835(20)30364-5. [Epub ahead of print]
    McCarthy N, Dolgikh N, Logue S, Patterson JB, Zeng Q, Gorman AM, Samali A, Fulda S.
      Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma, is associated with a low 5-year survival and harsh treatment side effects, underscoring an urgent need for therapy. The unfolded protein response (UPR) is activated in response to endoplasmic reticulum (ER) stress, where three ER stress receptors, IRE1, PERK and ATF6, aim to restore cellular homeostasis. The UPR is pro-tumourigenic in many cancers. In this study, we investigate basal UPR activity in RMS. Basal activation of IRE1 and PERK was observed in RMS cell lines, which was diminished upon addition of the IRE1 RNase inhibitor, MKC8866, or PERK inhibitor, AMGEN44. UPR inhibition caused a reduction in cell viability, cell proliferation and inhibition of long-term colony formation in both subtypes of RMS. Alveolar RMS (ARMS) subtype was highly sensitive to IRE1 inhibition, whereas embryonal RMS (ERMS) subtypes responded more markedly to PERK inhibition. Further investigation revealed a robust activation of senescence upon UPR inhibition. For the first time, the UPR is implicated in RMS biology and phenotype, and inhibition of UPR signalling reduces cell growth, suggesting that the UPR may be a promising target in RMS.
    Keywords:  Cancer; IRE1; PERK; Rhabdomyosarcoma; Unfolded protein response
  2. Liver Res. 2019 Mar;3(1): 55-64
    Liu X, Green RM.
      Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
    Keywords:  ATF6; ER stress; IRE1α; PERK; UPR; liver diseases
  3. J Cell Mol Med. 2020 Jul 16.
    Yao X, Tu Y, Xu Y, Guo Y, Yao F, Zhang X.
      Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA-mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)-27a-3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR-27a-3p and MAGI2 was predicted using bioinformatic analysis and verified by dual-luciferase reporter assay. Ectopic expression and inhibition of miR-27a-3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co-cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD-L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR-27a-3p expression. Elevation of miR-27a-3p and PD-L1 levels in macrophages was observed in response to exosomes-overexpressing miR-27a-3p in vivo and in vitro. miR-27a-3p could target and negatively regulate MAGI2, while MAGI2 down-regulated PD-L1 by up-regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+ , CD8+ T cells and IL-2, and T cells apoptosis were observed in response to co-culture of macrophages and CD3+ T cells. Conjointly, exosomal miR-27a-3p promotes immune evasion by up-regulating PD-L1 via MAGI2/PTEN/PI3K axis in breast cancer.
    Keywords:  MicroRNA-27a-3p; breast cancer; endoplasmic reticulum; exosomes; macrophages; programmed cell death-Ligand 1; tumour immune evasion of breast cancer cells
  4. Commun Biol. 2020 Jul 14. 3(1): 378
    Hotokezaka Y, Katayama I, Nakamura T.
      Endoplasmic reticulum (ER) stress can be caused by perturbations in ER function resulting from the accumulation of unfolded/misfolded proteins in the ER lumen. Accumulating unfolded proteins trigger unfolded protein responses (UPRs) through activating three transmembrane sensors on the ER: IRE1α, PERK, and ATF6. The orchestrated action of these molecules upregulates genes encoding proteins involved in the downregulation of protein synthesis and acceleration of protein secretion. Ineffectiveness of these fail-safe mechanisms may lead to apoptosis. However, the molecular mechanisms upstream of the UPR are not fully understood. Here we show participation of ataxia telangiectasia mutated (ATM) in stress-induced apoptosis. Cytoplasmic ATM serves as a platform on which protein phosphatase 2A-dependent dephosphorylation of AKT activates glycogen synthase kinase 3β, thereby downregulating nascent polypeptide-associated complex α subunit and γ-taxilin, triggering UPRs and leading to mitochondria-dependent apoptosis. These results suggest an ATM/AKT-dependent cell death pathway triggered by various forms of stress.
  5. Gastroenterology. 2020 Jul 13. pii: S0016-5085(20)34924-6. [Epub ahead of print]
    Stengel ST, Fazio A, Lipinski S, Jahn MT, Aden K, Ito G, Wottawa F, Kuiper JWP, Coleman OI, Tran F, Bordoni D, Bernardes JP, Jentzsch M, Luzius A, Bierwirth S, Messner B, Henning A, Welz L, Kakavand N, Falk-Paulsen M, Imm S, Hinrichsen F, Zilbauer M, Schreiber S, Kaser A, Blumberg R, Haller D, Rosenstiel P.
      BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs.METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time PCR and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins.
    RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation upon tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and TNF expression in these organoids upon induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 mRNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF.
    CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.
    Keywords:  IBD; gene expression; inflammation; signal transduction
  6. Biomedicines. 2020 Jul 13. pii: E210. [Epub ahead of print]8(7):
    Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA, Orekhov AN.
      The endoplasmic reticulum (ER) stress is an important event in the pathogenesis of different human disorders, including atherosclerosis. ER stress leads to disturbance of cellular homeostasis, apoptosis, and in the case of macrophages, to foam cell formation and pro-inflammatory cytokines production. In atherosclerosis, several cell types can be affected by ER stress, including endothelial cells, vascular smooth muscular cells, and macrophages. Modified low-density lipoproteins (LDL) and cytokines, in turn, can provoke ER stress through different processes. The signaling cascades involved in ER stress initiation are complex and linked to other cellular processes, such as lysosomal biogenesis and functioning, autophagy, mitochondrial homeostasis, and energy production. In this review, we discuss the underlying mechanisms of ER stress formation and the interplay of lipid accumulation and pro-inflammatory response. We will specifically focus on macrophages, which are the key players in maintaining chronic inflammatory milieu in atherosclerotic lesions, and also a major source of lipid-accumulating foam cells.
    Keywords:  atherosclerosis; endoplasmic reticulum stress; foam cells; macrophages; pro-inflammatory response
  7. FASEB J. 2020 Jul 17.
    Yousuf MS, Samtleben S, Lamothe SM, Friedman TN, Catuneanu A, Thorburn K, Desai M, Tenorio G, Schenk GJ, Ballanyi K, Kurata HT, Simmen T, Kerr BJ.
      Neuropathic pain is a common symptom of multiple sclerosis (MS) and current treatment options are ineffective. In this study, we investigated whether endoplasmic reticulum (ER) stress in dorsal root ganglia (DRG) contributes to pain hypersensitivity in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Inflammatory cells and increased levels of ER stress markers are evident in post-mortem DRGs from MS patients. Similarly, we observed ER stress in the DRG of mice with EAE and relieving ER stress with a chemical chaperone, 4-phenylbutyric acid (4-PBA), reduced pain hypersensitivity. In vitro, 4-PBA and the selective PERK inhibitor, AMG44, normalize cytosolic Ca2+ transients in putative DRG nociceptors. We went on to assess disease-mediated changes in the functional properties of Ca2+ -sensitive BK-type K+ channels in DRG neurons. We found that the conductance-voltage (GV) relationship of BK channels was shifted to a more positive voltage, together with a more depolarized resting membrane potential in EAE cells. Our results suggest that ER stress in sensory neurons of MS patients and mice with EAE is a source of pain and that ER stress modulators can effectively counteract this phenotype.
    Keywords:  BK channel; DRG; EAE; ER stress; MS; pain
  8. Cell Signal. 2020 Jul 13. pii: S0898-6568(20)30190-X. [Epub ahead of print] 109713
    Bartko JC, Li Y, Sun Z, Halterman MW.
      Regulated nuclear-cytoplasmic trafficking is a well-established mechanism utilized by cells to regulate adaptive and maladaptive responses to acute oxidant stress. Commonly associated with endoplasmic reticulum stress, the bZIP transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP/DDIT3) mediates the cellular response to redox stress with effects on cellular growth, differentiation, and survival. We show through functional analyses that CHOP contains a conserved, compound pat4/bipartite nuclear localization signal within the basic DNA-binding domain. Using phylogenetic analyses and mass spectrometry, we now show that Ser107 located within the linker region of the bipartite NLS domain is a substrate for phosphorylation under standard culture conditions. Studies using the S107E phospho-mimic of CHOP indicate that changes in the charge properties at this residue regulate CHOP's nuclear-to-cytoplasmic ratio. And while co-stimulation with the SERCA inhibitor thapsigargin induced injury in cells expressing wild-type CHOP, the S107A point-mutant blocked this response. These findings indicate that phosphorylation within the bipartite NLS exerts regulatory effects on both the subcellular localization and toxic potential of DDIT3/CHOP. Future studies geared towards defining the relevant kinase/phosphatase networks that converge on the phosphorylation-regulated NLS (prNLS) phosphoepitope may provide an opportunity to constrain cellular damage in the context of acute ER stress.
    Keywords:  Apoptosis; DDIT3/CHOP; Growth arrest; Nuclear localization signal; Nuclear-cytoplasmic transport; Post-translational modification