bims-unfpre Biomed News
on Unfolded protein response
Issue of 2020‒06‒14
seven papers selected by
Susan Logue
University of Manitoba


  1. Cell Death Dis. 2020 Jun 10. 11(6): 445
    Liu H, Xie S, Fang F, Kalvakolanu DV, Xiao W.
      SHQ1 was reported to control the biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). It was independently isolated as a growth suppressor, GRIM1, in a genetic screen. Recent studies have indicated that SHQ1 inhibits prostate cancer growth and metastasis. SHQ1 facilitates MYC RNA splicing to promote T-acute lymphoblastic leukemia (T-ALL) development. Thus, the mechanisms of SHQ1 in cancers remain largely unknown. We report here that SHQ1 promotes tumor apoptosis and chemo-sensitivity in hepatocellular carcinoma (HCC) cells. In HCC tissues from patients, expression of SHQ1 was significantly decreased in the tumor compared to adjacent tissues. Experiments with HCC xenograft models revealed that restoring SHQ1 levels enhanced the anti-tumor activity of the endoplasmic reticulum (ER) stress inducer tunicamycin (TM) and common chemotherapy drug paclitaxel (PTX). Mechanistically, SHQ1 is an ER-stress response gene which is regulated by p50ATF6 and XBP1s through an ER stress response like element located on the SHQ1 promoter. SHQ1 interacts with the ER chaperone GRP78 to release ER sensors PERK/IRE1α/ATF6 from GRP78/ER-sensor complexes, leading to hyper-activation of unfolded protein response (UPR). In the persistent ER stress conditions of a HepG2 xenograft tumor model, SHQ1-mediated hyper-activation of ER-sensor signaling induces apoptosis. Our study thus demonstrates a SHQ1-mediated ER-stress response feedback loop that promotes tumor sensitivity to chemotherapeutics.
    DOI:  https://doi.org/10.1038/s41419-020-2656-0
  2. Cells. 2020 Jun 10. pii: E1442. [Epub ahead of print]9(6):
    Krammes L, Hart M, Rheinheimer S, Diener C, Menegatti J, Grässer F, Keller A, Meese E.
      Neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes BIP, IRE1α, and XBP1. Upon induction of ER stress in neuronal cells, miR-34a-5p overexpression impacts the resulting UPR via a significant reduction in IRE1α and XBP1s that in turn leads to decreased viability, increased cytotoxicity and caspase activity. The possibility to modify the UPR signaling pathway by a single miRNA that targets central genes of the IRE1α branch offers new perspectives for future therapeutic approaches against neurodegeneration.
    Keywords:  BIP; IRE1α; XBP1; endoplasmic reticulum; miR-34a-5p; neurodegeneration; unfolded protein response
    DOI:  https://doi.org/10.3390/cells9061442
  3. Cell Metab. 2020 Jun 05. pii: S1550-4131(20)30256-4. [Epub ahead of print]
    LaMarche NM, Kane H, Kohlgruber AC, Dong H, Lynch L, Brenner MB.
      Adipose tissue invariant natural killer T (iNKT) cells are phenotypically different from other iNKT cells because they produce IL-10 and control metabolic homeostasis. Why that is the case is unclear. Here, using single-cell RNA sequencing, we found several adipose iNKT clusters, which we grouped into two functional populations based on NK1.1 expression. NK1.1NEG cells almost exclusively produced IL-10 and other regulatory cytokines, while NK1.1POS iNKT cells predominantly produced IFNγ. Mechanistically, biochemical fractionation revealed that free fatty acids drive IL-10 production primarily in NK1.1NEG iNKT cells via the IRE1α-XBP1s arm of the unfolded protein response. Correspondingly, adoptive transfer of adipose tissue NK1.1NEG iNKT cells selectively restored metabolic function in obese mice. Further, we found an unexpected role for NK1.1POS iNKT cells in lean adipose tissue, as IFNγ licenses natural killer cell-mediated macrophage killing to limit pathological macrophage expansion. Together, these two iNKT cell populations utilize non-redundant pathways to preserve metabolic integrity.
    Keywords:  ER stress; NK cells; adipose tissue; iNKT cells; inflammation; lipids; macrophages; obesity
    DOI:  https://doi.org/10.1016/j.cmet.2020.05.017
  4. Elife. 2020 Jun 11. pii: e53159. [Epub ahead of print]9
    Gupta A, Stocker H.
      The transcription factor FoxO has been shown to block proliferation and progression in mTORC1-driven tumorigenesis but the picture of the relevant FoxO target genes remains incomplete. Here, we employed RNA-seq profiling on single clones isolated using laser capture microdissection from Drosophila larval eye imaginal discs to identify FoxO targets that restrict the proliferation of Tsc1-deficient cells under nutrient restriction (NR). Transcriptomics analysis revealed downregulation of endoplasmic reticulum-associated protein degradation pathway components upon foxo knockdown. Induction of ER stress pharmacologically or by suppression of other ER stress response pathway components led to an enhanced overgrowth of Tsc1 knockdown tissue. Increase of ER stress in Tsc1 loss-of-function cells upon foxo knockdown was also confirmed by elevated expression levels of known ER stress markers. These results highlight the role of FoxO in limiting ER stress to regulate Tsc1 mutant overgrowth.
    Keywords:  D. melanogaster; ER stress; FoxO; Tsc1; cancer biology; genetics; genomics; laser capture microdissection
    DOI:  https://doi.org/10.7554/eLife.53159
  5. PLoS Biol. 2020 Jun 10. 18(6): e3000687
    Batista A, Rodvold JJ, Xian S, Searles SC, Lew A, Iwawaki T, Almanza G, Waller TC, Lin J, Jepsen K, Carter H, Zanetti M.
      In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.
    DOI:  https://doi.org/10.1371/journal.pbio.3000687
  6. J Vis Exp. 2020 May 21.
    Bar-Ziv R, Frakes AE, Higuchi-Sanabria R, Bolas T, Frankino PA, Gildea HK, Metcalf MG, Dillin A.
      Organisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPRER), the unfolded protein response of the mitochondria (UPRMT), the heat shock response (HSR), and the oxidative stress response (OxSR). The protocols presented here describe methods to detect and characterize the activation of these pathways and their physiological consequences in the nematode, C. elegans. First, the use of pathway-specific fluorescent transcriptional reporters is described for rapid cellular characterization, drug screening, or large-scale genetic screening (e.g., RNAi or mutant libraries). In addition, complementary, robust physiological assays are described, which can be used to directly assess sensitivity of animals to specific stressors, serving as functional validation of the transcriptional reporters. Together, these methods allow for rapid characterization of the cellular and physiological effects of internal and external proteotoxic perturbations.
    DOI:  https://doi.org/10.3791/61001
  7. Nat Commun. 2020 Jun 10. 11(1): 2936
    Reich S, Nguyen CDL, Has C, Steltgens S, Soni H, Coman C, Freyberg M, Bichler A, Seifert N, Conrad D, Knobbe-Thomsen CB, Tews B, Toedt G, Ahrends R, Medenbach J.
      Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.
    DOI:  https://doi.org/10.1038/s41467-020-16747-y