bims-tunefa Biomed News
on Tumor necrosis factor superfamily and post-translational modifications
Issue of 2020‒11‒22
twenty-one papers selected by
John Silke
Walter and Eliza Hall Institute of Medical Research


  1. EMBO J. 2020 Nov 20. e103303
      HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), is a critical regulator of inflammation. However, how HOIP itself is regulated to control inflammatory responses is unclear. Here, we discover that site-specific ubiquitination of K784 within human HOIP promotes tumor necrosis factor (TNF)-induced inflammatory signaling. A HOIP K784R mutant is catalytically active but shows reduced induction of an NF-κB reporter relative to wild-type HOIP. HOIP K784 is evolutionarily conserved, equivalent to HOIP K778 in mice. We generated HoipK778R/K778R knock-in mice, which show no overt developmental phenotypes; however, in response to TNF, HoipK778R/K778R mouse embryonic fibroblasts display mildly suppressed NF-κB activation and increased apoptotic markers. On the other hand, HOIP K778R enhances the TNF-induced formation of TNFR complex II and an interaction between TNFR complex II and LUBAC. Loss of the LUBAC component SHARPIN leads to embryonic lethality in HoipK778R/K778R mice, which is rescued by knockout of TNFR1. We propose that site-specific ubiquitination of HOIP regulates a LUBAC-dependent switch between survival and apoptosis in TNF signaling.
    Keywords:  HOIP E3 ligase; TNF; apoptosis; linear ubiquitination; skin inflammation
    DOI:  https://doi.org/10.15252/embj.2019103303
  2. Front Physiol. 2020 ;11 1022
      Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
    Keywords:  E3 ligase; Gigaxonin; autophagy; cell signaling; cytoskeleton; neurodegenerative disease; neurodevelopmental disease; ubiquitin
    DOI:  https://doi.org/10.3389/fphys.2020.01022
  3. Adv Immunol. 2020 ;pii: S0065-2776(20)30038-9. [Epub ahead of print]148 1-48
      A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
    Keywords:  Autoimmunity; Cell death; Inflammation; NF-κB; Ubiquitin
    DOI:  https://doi.org/10.1016/bs.ai.2020.10.001
  4. iScience. 2020 Nov 20. 23(11): 101726
      Post-transcriptional regulation mechanisms control mRNA stability or translational efficiency via ribosomes, and recent evidence indicates that it is a major determinant of the accurate levels of cytokine mRNAs. Transcriptional regulation of Tnf has been well studied and found to be important for the rapid induction of Tnf mRNA and regulation of the acute phase of inflammation, whereas study of its post-transcriptional regulation has been largely limited to the role of the AU-rich element (ARE), and to a lesser extent, to that of the constitutive decay element (CDE). We have identified another regulatory element (NRE) in the 3' UTR of Tnf and demonstrate that ARE, CDE, and NRE cooperate in vivo to efficiently downregulate Tnf expression and prevent autoimmune inflammatory diseases. We also show that excessive TNF may lead to embryonic death.
    Keywords:  Developmental Biology; Immunology; Molecular Biology
    DOI:  https://doi.org/10.1016/j.isci.2020.101726
  5. Cell Mol Immunol. 2020 Nov 17.
      Generation and maintenance of antigen-specific effector and memory T cells are central events in immune responses against infections. We show that TNF receptor-associated factor 2 (TRAF2) maintains a survival signaling axis in effector and memory CD8 T cells required for immune responses against infections. This signaling axis involves activation of Tpl2 and its downstream kinase ERK by NF-κB-inducing kinase (NIK) and degradation of the proapoptotic factor Bim. NIK mediates Tpl2 activation by stimulating the phosphorylation and degradation of the Tpl2 inhibitor p105. Interestingly, while NIK is required for Tpl2-ERK signaling under normal conditions, uncontrolled NIK activation due to loss of its negative regulator, TRAF2, causes constitutive degradation of p105 and Tpl2, leading to severe defects in ERK activation and effector/memory CD8 T cell survival. Thus, TRAF2 controls a previously unappreciated signaling axis mediating effector/memory CD8 T cell survival and protective immunity.
    Keywords:  Bacterial infection; Effector and memory CD8 T cells; NIK; Protective immunity; T cell survival; TRAF2; Tpl2
    DOI:  https://doi.org/10.1038/s41423-020-00583-7
  6. Sci Adv. 2020 Nov;pii: eabc3465. [Epub ahead of print]6(47):
      Gasdermin D (GSDMD) is a pore-forming protein that promotes pyroptosis and release of proinflammatory cytokines. Recent studies revealed that apoptotic caspase-8 directly cleaves GSDMD to trigger pyroptosis. However, the molecular requirements for caspase-8-dependent GSDMD cleavage and the physiological impact of this signaling axis are unresolved. Here, we report that caspase-8-dependent GSDMD cleavage confers susceptibility to tumor necrosis factor (TNF)-induced lethality independently of caspase-1 and that GSDMD activation provides host defense against Yersinia infection. We further demonstrate that GSDMD inactivation by apoptotic caspases at aspartate 88 (D88) suppresses TNF-induced lethality but promotes anti-Yersinia defense. Last, we show that caspase-8 dimerization and autoprocessing are required for GSDMD cleavage, and provide evidence that the caspase-8 autoprocessing and activity on various complexes correlate with its ability to directly cleave GSDMD. These findings reveal GSDMD as a potential therapeutic target to reduce inflammation associated with mutations in the death receptor signaling machinery.
    DOI:  https://doi.org/10.1126/sciadv.abc3465
  7. Curr Opin Cell Biol. 2020 Nov 12. pii: S0955-0674(20)30145-9. [Epub ahead of print]67 141-146
      Organism development requires fine-tuning of the cell number by apoptosis and cell division, as well as proper cell fate specification. These processes are achieved through the integration of intracellular signals and intercellular interactions with neighboring cells as well as the extracellular environment. Apoptosis, a form of cell death typically associated with development and homeostasis, is mainly regulated by the caspase family of proteases. Although caspases are known to initiate and execute apoptosis, it is also known that low caspase levels have a broad spectrum of nonapoptotic functions, including differentiation and organ growth. These different roles of caspases raise intriguing questions: how are caspase levels regulated and what defines the balance between life and death? In this review, we focus on some recent findings that highlight how nonlethal levels of caspase activity, transcriptional coregulator Yes-associated protein (YAP), and mechanical factors influence each other in determining cell fate. We further discuss a possibility that the mechanical signals encountered by cells could regulate the level of caspase activity by mechanics through YAP and, in turn, how this determines whether a cell is susceptible or resistant to undergoing apoptosis in response to cell death stimuli.
    Keywords:  Apoptosis; Caspase; Differentiation; Mechanics; Mechanobiology; YAP
    DOI:  https://doi.org/10.1016/j.ceb.2020.10.010
  8. Eur J Med Chem. 2020 Nov 05. pii: S0223-5234(20)30965-X. [Epub ahead of print] 112993
      Small molecule inhibitors of proteins represent important medicines and critical chemical tools to investigate the biology of the target proteins. Advances in various -omics technologies have fueled the pace of discovery of disease-relevant proteins. Translating these discoveries into human benefits requires us to develop specific chemicals to inhibit the proteins. However, traditional small molecule inhibitors binding to orthosteric or allosteric sites face significant challenges. These challenges include drug selectivity, therapy resistance as well as drugging undruggable proteins and multi-domain proteins. To address these challenges, PROteolysis TArgeting Chimera (PROTAC) has been proposed. PROTACs are heterobifunctional molecules containing a binding ligand for a protein of interest and E3 ligase-recruiting ligand that are connected through a chemical linker. Binding of a PROTAC to its target protein will bring a E3 ligase in close proximity to initiate polyubiquitination of the target protein ensuing its proteasome-mediated degradation. Unlike small molecule inhibitors, PROTACs achieve target protein degradation in its entirety in a catalytical fashion. In this review, we analyze recent advances in PROTAC design to discuss how PROTACs can address the challenges facing small molecule inhibitors to potentially deliver next-generation medicines and chemical tools with high selectivity and efficacy. We also offer our perspectives on the future promise and potential limitations facing PROTACs. Investigations to overcome these limitations of PROTACs will further help realize the promise of PROTACs for human benefits.
    Keywords:  Cancer; Druggability; Inhibitor; PROTAC; Selectivity
    DOI:  https://doi.org/10.1016/j.ejmech.2020.112993
  9. Cell Death Differ. 2020 Nov 18.
      Hepatocyte cell death and liver inflammation have been well recognized as central characteristics of nonalcoholic steatohepatitis (NASH), however, the underlying molecular basis remains elusive. The kinase receptor-interacting protein 1 (RIP1) is a multitasking molecule with distinct functions in regulating apoptosis, necroptosis, and inflammation. Dissecting the role of RIP1 distinct functions in different pathophysiology has absorbed huge research enthusiasm. Wild-type and RIP1 kinase-dead (Rip1K45A/K45A) mice were fed with high-fat diet (HFD) to investigate the role of RIP1 kinase activity in the pathogenesis of NASH. Rip1K45A/K45A mice exhibited significantly alleviated NASH phenotype of hepatic steatosis, liver damage, fibrosis as well as reduced hepatic cell death and inflammation compared to WT mice. Our results also indicated that both in vivo lipotoxicity and in vitro saturated fatty acids (palmitic acid) treatment were able to induce the kinase activation of RIP1 in liver macrophages. RIP1 kinase was required for mediating inflammasome activation, apoptotic and necrotic cell death induced by palmitic acid in both bone marrow-derived macrophage and mouse primary Kupffer cells. Results from chimeric mice established through lethal irradiation and bone marrow transplantation further confirmed that the RIP1 kinase in hematopoietic-derived macrophages contributed mostly to the disease progression in NASH. Consistent with murine models, we also found that RIP1 kinase was markedly activated in human NASH, and the kinase activation mainly occurred in liver macrophages as indicated by immunofluorescence double staining. In summary, our study indicated that RIP1 kinase was phosphorylated and activated mainly in liver macrophages in both experimental and clinical NASH. We provided direct genetic evidence that the kinase activity of RIP1 especially in hematopoietic-derived macrophages contributes to the pathogenesis of NASH, through mediating inflammasome activation and cell death induction. Macrophage RIP1 kinase represents a specific and potential therapeutic target for NASH.
    DOI:  https://doi.org/10.1038/s41418-020-00668-w
  10. FEBS J. 2020 Nov 19.
      The 26S proteasome is responsible for regulated proteolysis in eukaryotic cells. Its substrates are diverse in structure, function, sequence length, and amino acid composition, and are targeted to the proteasome by post-translational modification with ubiquitin. Ubiquitination occurs through a complex enzymatic cascade and can also signal for other cellular events, unrelated to proteasome-catalyzed degradation. Like other post-translational protein modifications, ubiquitination is reversible, with ubiquitin chain hydrolysis catalyzed by the action of deubiquitinating enzymes (DUBs), ~90 of which exist in humans and allow for temporal events as well as dynamic ubiquitin-chain remodeling. DUBs have been known for decades to be an integral part of the proteasome, as deubiquitination is coupled to substrate unfolding and translocation into the internal degradation chamber. Moreover, the proteasome also binds several ubiquitinating enzymes as well as shuttle factors that recruit ubiquitinated substrates. The role of this intricate machinery and how ubiquitinated substrates interact with proteasomes remains an area of active investigation. Here, we review what has been learned about the mechanisms used by the proteasome to bind ubiquitinated substrates, substrate shuttle factors, ubiquitination machinery, and DUBs. We also discuss many open questions that require further study or the development of innovative approaches to be answered. Finally, we address the promise of expanded therapeutic targeting that could benefit from such new discoveries.
    DOI:  https://doi.org/10.1111/febs.15638
  11. Front Physiol. 2020 ;11 573372
      Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
    Keywords:  NKLAM; RNF19B; cytotoxicity; innate immunity; macrophage; natural killer; phagocytosis; ubiquitin ligase
    DOI:  https://doi.org/10.3389/fphys.2020.573372
  12. Front Cell Dev Biol. 2020 ;8 586807
      The death receptor Fas can induce cell death through the extrinsic pathway of apoptosis in a variety of cells, including developing thymocytes. Although Fas-induced cell death has been researched and modeled extensively, most of the studies have been done in vitro because of the lethality of Fas triggering in vivo. Thus, little is known about the time line of this type of cell death in vivo, specifically, how does the presence of macrophages and pro-survival cytokines affect apoptosis progression. In addition, although the sequence and timing of events during intrinsic pathway activation in thymocytes in situ have been described, no corresponding data for the extrinsic pathway are available. To address this gap in our knowledge, we established a novel system to study Fas-induced thymocyte cell death using tissue explants. We found that within 1 h of Fas ligation, caspase 3 was activated, within 2 h phosphatidylserine was externalized to serve as an "eat-me" signal, and at the same time, we observed signs of cell loss, likely due to efferocytosis. Both caspase 3 activation and phosphatidylserine exposure were critical for cell loss. Although Fas ligand (FasL) was delivered simultaneously to all cells, we observed significant variation in the entry into the cell death pathway. This model also allowed us to revisit the role of Fas in negative selection, and we ruled out an essential part for it in the deletion of autoreactive thymocytes. Our work provides a timeline for the apoptosis-associated events following Fas triggering in situ and confirms the lack of involvement of Fas in the negative selection of thymocytes.
    Keywords:  Fas; FasL; apoptosis; caspase 3; efferocytosis; negative selection; phosphatidylserine; thymocytes
    DOI:  https://doi.org/10.3389/fcell.2020.586807
  13. Nature. 2020 Nov 18.
      Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets1-3, but a substantial subset of proteins are resistant to targeted degradation using existing approaches4,5. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL66. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.
    DOI:  https://doi.org/10.1038/s41586-020-2925-1
  14. Curr Med Chem. 2020 Nov 17.
      The PROTAC (PROteolysis TArgeting Chimera) technology is a target protein degradation strategy, based on the ubiquitin-proteasome system, which has been gradually developed into a potential means of targeted cancer therapy in recent years. This strategy has already shown significant advantages over traditional small-molecule inhibitors in terms of pharmacodynamics, selectivity, and drug resistance. Several small molecule PROTACs have been in a Phase I clinical trial. Herein, we introduced the mechanism, characteristics, and advantages of PROTAC strategy. And we summarize the recent advances in the development of small-molecule PROTACs for cancer treatment. We hope this review will be helpful in optimizing the design of the ideal small-molecule PROTACs and advancing targeted anticancer research.
    Keywords:  Anticancer; E3 ligase; PROTAC; protein degradation
    DOI:  https://doi.org/10.2174/0929867327666201117141611
  15. FEBS J. 2020 Nov 20.
      Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger non-apoptotic pathways in cancer and in non-transformed cells, i.e. immune cells. Here, we review the current knowledge on non-canonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells is presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and non-apoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
    Keywords:  Apoptosis; Cancer; Immune cell regulation; NK cells; Non-canonical TRAIL signaling; TRAIL signaling
    DOI:  https://doi.org/10.1111/febs.15637
  16. Mol Cell. 2020 Nov 19. pii: S1097-2765(20)30778-4. [Epub ahead of print]80(4): 560-561
      Bilokapic at al. (2020) capture PARP2 and its accessory factor HPF1 bridging a DNA break between two nucleosomes, providing a captivating view of the context in which PARP2/HPF1 employ ADP-ribose protein modification to coordinate DNA repair and alter chromatin structure.
    DOI:  https://doi.org/10.1016/j.molcel.2020.10.044
  17. Br J Cancer. 2020 Nov 20.
      BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo.METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models.
    RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation.
    CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.
    DOI:  https://doi.org/10.1038/s41416-020-01167-y
  18. Sci Rep. 2020 Nov 20. 10(1): 20297
      Fibroblast-like synoviocytes (FLS) play a critical role in the pathogenesis of rheumatoid arthritis (RA). Chronic inflammation induces transcriptomic and epigenetic modifications that imparts a persistent catabolic phenotype to the FLS, despite their dissociation from the inflammatory environment. We analyzed high throughput gene expression and chromatin accessibility data from human and mouse FLS from our and other studies available on public repositories, with the goal of identifying the persistently reprogrammed signaling pathways driven by chronic inflammation. We found that the gene expression changes induced by short-term tumor necrosis factor-alpha (TNF) treatment were largely sustained in the FLS exposed to chronic inflammation. These changes that included both activation and repression of gene expression, were accompanied by the remodeling of chromatin accessibility. The sustained activated genes (SAGs) included established pro-inflammatory signaling components known to act at multiple levels of NF-kappaB, STAT and AP-1 signaling cascades. Interestingly, the sustained repressed genes (SRGs) included critical mediators and targets of the BMP signaling pathway. We thus identified sustained repression of BMP signaling as a unique constituent of the long-term inflammatory memory induced by chronic inflammation. We postulate that simultaneous targeting of these activated and repressed signaling pathways may be necessary to combat RA persistence.
    DOI:  https://doi.org/10.1038/s41598-020-77380-9
  19. Cell Rep. 2020 Nov 17. pii: S2211-1247(20)31370-X. [Epub ahead of print]33(7): 108381
      Central to anti-tumor immunity are dendritic cells (DCs), which stimulate long-lived protective T cell responses. Recent studies have demonstrated that DCs can achieve a state of hyperactivation, which is associated with inflammasome activities within living cells. Herein, we report that hyperactive DCs have an enhanced ability to migrate to draining lymph nodes and stimulate potent cytotoxic T lymphocyte (CTL) responses. This enhanced migratory activity is dependent on the chemokine receptor CCR7 and is associated with a unique transcriptional program that is not observed in conventionally activated or pyroptotic DCs. We show that hyperactivating stimuli are uniquely capable of inducing durable CTL-mediated anti-tumor immunity against tumors that are sensitive or resistant to PD-1 inhibition. These protective responses are intrinsic to the cDC1 subset of DCs, depend on the inflammasome-dependent cytokine IL-1β, and enable tumor lysates to serve as immunogens. If these activities are verified in humans, hyperactive DCs may impact immunotherapy.
    Keywords:  CD8+ T cells; IL-1β; anti-tumor immunity; dendritic cells; hyperactivation; inflammasomes; pyroptosis
    DOI:  https://doi.org/10.1016/j.celrep.2020.108381
  20. J Pathol. 2020 Nov 16.
      The dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm, and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding. We have compared abdomen, back and cheek, three anatomical sites representing the distinct embryonic tissues from which the dermis can arise, during homeostasis and wound repair using RNA sequencing (RNA-seq), histology and fibroblast cultures. Our transcriptional analyses demonstrate differences between body sites that reflect their diverse origins. Moreover, we report histological and transcriptional variations during a wound response including site differences in extracellular matrix (ECM) composition, cell migration and proliferation, and re-enactment of distinct developmental programs. These findings reveal profound regional variation in the mechanisms of tissue repair. This article is protected by copyright. All rights reserved.
    Keywords:  anatomy; development; embryogenesis; lateral plate; mesoderm; neural crest; paraxial; regeneration; regional; skin; tissue repair
    DOI:  https://doi.org/10.1002/path.5589
  21. Front Cell Dev Biol. 2020 ;8 595253
      Necroptosis is a type of programmed necrosis which depends on the activation of receptor-interacting protein kinase 3 (RIP3). Herpes simplex virus type 1 (HSV-1) is known to block necroptosis by the viral protein ICP6 in human cells, but its specific inhibitory mechanism is not fully understood. Here we reported that ICP6 could promote rather than suppress the formation of necrosome, the necroptosis signaling complex containing RIP3 and upstream regulator receptor-interacting protein kinase 1 (RIP1), but blocked RIP3 activation. Moreover, ICP6 could reduce the necroptosis-specific auto-phosphorylation of RIP1 regardless of the presence of RIP3. These results indicate that ICP6 block necroptosis through preventing RIP1 activation dependent signal transduction in necrosome.
    Keywords:  ICP6; RIP1; RIP3; necroptosis; necrosome
    DOI:  https://doi.org/10.3389/fcell.2020.595253