bims-tucedo Biomed News
on Tumor cell dormancy
Issue of 2022‒05‒29
27 papers selected by
Isabel Puig Borreil
Vall d’Hebron Institute of Oncology

  1. Cancer Discov. 2022 May 27. OF1
      Heterogeneous expression of phosphoglycerate dehydrogenase (PHGDH) promotes early metastasis.
  2. Nat Commun. 2022 May 23. 13(1): 2866
      Current therapy against colorectal cancer (CRC) is based on DNA-damaging agents that remain ineffective in a proportion of patients. Whether and how non-curative DNA damage-based treatment affects tumor cell behavior and patient outcome is primarily unstudied. Using CRC patient-derived organoids (PDO)s, we show that sublethal doses of chemotherapy (CT) does not select previously resistant tumor populations but induces a quiescent state specifically to TP53 wildtype (WT) cancer cells, which is linked to the acquisition of a YAP1-dependent fetal phenotype. Cells displaying this phenotype exhibit high tumor-initiating and metastatic activity. Nuclear YAP1 and fetal traits are present in a proportion of tumors at diagnosis and predict poor prognosis in patients carrying TP53 WT CRC tumors. We provide data indicating the higher efficacy of CT together with YAP1 inhibitors for eradication of therapy resistant TP53 WT cancer cells. Together these results identify fetal conversion as a useful biomarker for patient prognosis and therapy prescription.
  3. Proc Natl Acad Sci U S A. 2022 May 31. 119(22): e2200230119
      SignificanceBrain metastasis with current limited treatment options is a common complication in advanced cancer patients, and breast-to-brain metastasis (B2BM) is one of the major types. In this work, we report that brain metastasis oncogenic long noncoding RNA (BMOR) is a key brain-enriched long noncoding RNA for the development of B2BM. We demonstrate that BMOR allows B2BM cells to colonize the brain tissue by evading immune-mediated killing in the brain microenvironment. At the molecular level, BMOR binds and inactivates IRF3 in B2BM cells. Finally, BMOR silencer can effectively suppress the development of brain metastasis in vivo. Therefore, our findings reveal a way in which cancer cells evade immune-mediated killing in the brain microenvironment for brain metastasis development and establish therapeutic targets with potential targeted strategies against B2BM.
    Keywords:  BMOR; IRF3; brain metastasis; immune evasion; lncRNA
  4. Trends Cancer. 2022 May 23. pii: S2405-8033(22)00094-2. [Epub ahead of print]
      Cancer cells are plastic - they can assume a wide range of distinct phenotypes. Plasticity is integral to cancer initiation and progression, as well as to the emergence and maintenance of intratumoral heterogeneity. Furthermore, plastic cells can rapidly adapt to and evade therapy, which poses a challenge for effective cancer treatment. As such, targeting plasticity in cancer holds tremendous promise. Yet, the principles governing plasticity in cancer cells remain poorly understood. Here, we provide an overview of the fundamental molecular and cellular mechanisms that underlie plasticity in cancer and in other biological contexts, including development and regeneration. We propose a key role for high-plasticity cell states (HPCSs) as crucial nodes for cell state transitions and enablers of intra-tumoral heterogeneity.
    Keywords:  cancer therapy; cell state transition; differentiation; intratumoral heterogeneity; plasticity; tumor evolution
  5. Science. 2022 May 27. 376(6596): eabe1505
      In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.
  6. Nat Commun. 2022 May 25. 13(1): 2926
      Genomic analyses have revealed mutational footprints associated with DNA maintenance gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity. We detect mutational signatures in cancer cell line exomes (where matched healthy tissues are not available) by adjusting for the confounding germline mutation spectra across ancestries. We identify robust associations between various mutational signatures and drug activity across cancer cell lines; these are as numerous as associations with established genetic markers such as driver gene alterations. Signatures of prior exposures to DNA damaging agents - including chemotherapy - tend to associate with drug resistance, while signatures of deficiencies in DNA repair tend to predict sensitivity towards particular therapeutics. Replication analyses across independent drug and CRISPR genetic screening data sets reveal hundreds of robust associations, which are provided as a resource for drug repurposing guided by mutational signature markers.
  7. Mol Cancer. 2022 May 26. 21(1): 118
      BACKGROUND: PIK3CA mutation and PTEN suppression lead to tumorigenesis and drug resistance in colorectal cancer (CRC). There is no research on the role of circular RNAs (circRNAs) in regulating PIK3CA mutation and MEK inhibitor resistance in CRC.METHODS: The expression of circLHFPL2 in PIK3CA-mutant and wild-type cells and tissues was quantified by RNA-sequencing and qRT-PCR. CCK-8 assay and colony formation assay were used to evaluate cell viability. Annexin V/PI staining was implemented to assess cell apoptosis. Luciferase assay, biotin-coupled microRNA capture, and RIP assay were used to validate the interaction among potential targets. Western blotting and qRT-PCR assays were used to evaluate the expression of involved targets. Xenograft tumor in a nude mouse model was used to explore the role of circRNAs in vivo.
    RESULTS: RNA sequencing defined downregulated expression of circLHFPL2 in both PIK3CAH1047R (HCT116) and PIK3CAE545K (DLD1) cells. CircLHFPL2 was also downregulated in PIK3CA-mutant CRC primary cells and tissues, which was correlated with poor prognosis. CircLHFPL2 was mainly localized in the cytoplasm and its downregulation was attributed to the PI3K/AKT signaling pathway activated by phosphorylating Foxo3a. CircLHFPL2 inhibited PI3KCA-Mut CRC progression both in vitro and in vivo. Furthermore, our work indicated that circLHFPL2 acts as a ceRNA to sponge miR-556-5p and miR-1322 in CRC cells and in turn modulate the expression of PTEN. Importantly, circLHFPL2 was able to overcome PIK3CA-mediated MEK inhibitor resistance in CRC cells.
    CONCLUSIONS: Downregulation of circLHFPL2 sustains the activation of the PI3K/AKT signaling pathway via a positive feedback loop in PIK3CA-mutant CRC. In addition, downregulation of circLHFPL2 leads to MEK inhibitor resistance in CRC. Therefore, targeting circLHFPL2 could be an effective approach for the treatment of CRC patients harboring oncogenic PIK3CA mutations.
    Keywords:  Colorectal cancer; PI3KCA mutation; PTEN; circLHFPL2; miR-1322; miR-556-5p
  8. Nat Cancer. 2022 May 26.
      Resistance to antitumor treatment contributes to patient mortality. Functional proteomic screening of organoids derived from chemotherapy-treated patients with breast cancer identified nuclear receptor corepressor 2 (NCOR2) histone deacetylase as an inhibitor of cytotoxic stress response and antitumor immunity. High NCOR2 in the tumors of patients with breast cancer predicted chemotherapy refractoriness, tumor recurrence and poor prognosis. Molecular studies revealed that NCOR2 inhibits antitumor treatment by regulating histone deacetylase 3 (HDAC3) to repress interferon regulatory factor 1 (IRF-1)-dependent gene expression and interferon (IFN) signaling. Reducing NCOR2 or impeding its epigenetic activity by modifying its interaction with HDAC3 enhanced chemotherapy responsiveness and restored antitumor immunity. An adeno-associated viral NCOR2-HDAC3 competitor potentiated chemotherapy and immune checkpoint therapy in culture and in vivo by permitting transcription of IRF-1-regulated proapoptosis and inflammatory genes to increase IFN-γ signaling. The findings illustrate the utility of patient-derived organoids for drug discovery and suggest that targeting stress and inflammatory-repressor complexes such as NCOR2-HDAC3 could overcome treatment resistance and improve the outcome of patients with cancer.
  9. Clin Cancer Res. 2022 May 26. pii: clincanres.1083.2022. [Epub ahead of print]
      The patient-derived organoids (PDOs) platform recapitulates the phenotype, genotype, and molecular characteristics of primary tumors. High-throughput drug screening in terms of pharmacotyping using standard of care chemotherapy agents in the PDOs platform has shown promising sensitivities to guide precision medicine for individual PDAC patients within a clinically relevant time frame.
  10. Nat Commun. 2022 May 26. 13(1): 2936
      Low-cost multi-omics sequencing is expected to become clinical routine and transform precision oncology. Viable computational methods that can facilitate tailored intervention while tolerating sequencing biases are in high demand. Here we propose a class of transparent and interpretable computational methods called integral genomic signature (iGenSig) analyses, that address the challenges of cross-dataset modeling through leveraging information redundancies within high-dimensional genomic features, averaging feature weights to prevent overweighing, and extracting unbiased genomic information from large tumor cohorts. Using genomic dataset of chemical perturbations, we develop a battery of iGenSig models for predicting cancer drug responses, and validate the models using independent cell-line and clinical datasets. The iGenSig models for five drugs demonstrate predictive values in six clinical studies, among which the Erlotinib and 5-FU models significantly predict therapeutic responses in three studies, offering clinically relevant insights into their inverse predictive signature pathways. Together, iGenSig provides a computational framework to facilitate tailored cancer therapy based on multi-omics data.
  11. Cell Death Differ. 2022 May 23.
      Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.
  12. Clin Cancer Res. 2022 May 26. pii: clincanres.0527.2022-3-18 13:13:01.167. [Epub ahead of print]
      PURPOSE: Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutics to prevent recurrence are needed.EXPERIMENTAL DESIGN: We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models.
    RESULTS: We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small-molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells.
    CONCLUSIONS: Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.
  13. Mol Cancer. 2022 May 27. 21(1): 119
      BACKGROUND: Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and its mechanism remains poorly understood. Therefore, it is urgent to discover potential novel diagnostic biomarkers and therapeutic targets that can potentially facilitate the development of efficient anticancer strategies.METHODS: A series of functional in vitro and in vivo experiments were conducted to evaluate the biological behaviors of PCa cells. RNA pulldown, Western blot, luciferase reporter, immunohistochemistry and chromatin immunoprecipitation assays were applied to dissect the detailed underlying mechanisms. High-throughput sequencing was performed to screen for differentially expressed circRNAs in PCa and adjacent normal tissues.
    RESULTS: Upregulation of protein arginine methyltransferase 5 (PRMT5) is associated with poor progression-free survival and the activation of multiple signaling pathways in PCa. PRMT5 inhibits the transcription of CAMK2N1 by depositing the repressive histone marks H4R3me2s and H3R8me2s on the proximal promoter region of CAMK2N1, and results in malignant progression of PCa both in vitro and in vivo. Moreover, the expression of circSPON2, a candidate circRNA in PCa tissues identified by RNA-seq, was found to be associated with poor clinical outcomes in PCa patients. Further results showed that circSPON2 induced PCa cell proliferation and migration, and that the circSPON2-induced effects were counteracted by miR-331-3p. Particularly, circSPON2 acted as a competitive endogenous RNA (ceRNA) of miR-331-3p to attenuate the repressive effects of miR-331-3p on its downstream target PRMT5.
    CONCLUSIONS: Our findings showed that the epigenetic regulator PRMT5 aggravates PCa progression by inhibiting the transcription of CAMK2N1 and is modulated by the circSPON2/miR-331-3p axis, which may serve as a potential therapeutic target for patients with aggressive PCa.
    Keywords:  CAMK2N1; PRMT5; Prostate cancer; circSPON2; miR-331-3p
  14. Nat Commun. 2022 May 26. 13(1): 2945
      Tumor cells with diverse phenotypes and biological behaviors are influenced by stromal cells through secretory factors or direct cell-cell contact. Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia with fibroblasts as the major cell type. In the present study, we observe enrichment of myofibroblasts in a juxta-tumoral position with tumor cells undergoing epithelial-mesenchymal transition (EMT) that facilitates invasion and correlates with a worse clinical prognosis in PDAC patients. Direct cell-cell contacts forming heterocellular aggregates between fibroblasts and tumor cells are detected in primary pancreatic tumors and circulating tumor microemboli (CTM). Mechanistically, ATP1A1 overexpressed in tumor cells binds to and reorganizes ATP1A1 of fibroblasts that induces calcium oscillations, NF-κB activation, and activin A secretion. Silencing ATP1A1 expression or neutralizing activin A secretion suppress tumor invasion and colonization. Taken together, these results elucidate the direct interplay between tumor cells and bound fibroblasts in PDAC progression, thereby providing potential therapeutic opportunities for inhibiting metastasis by interfering with these cell-cell interactions.
  15. Trends Cancer. 2022 May 19. pii: S2405-8033(22)00093-0. [Epub ahead of print]
      The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.
    Keywords:  CDK4; CDK6; CHK1; RB; abemaciclib; ambra1; aurora kinase; cyclin D1; cyclin E; p16(INK4A); p27(KIP1); palbociclib
  16. Clin Cancer Res. 2022 May 27. OF1-OF16
      PURPOSE: We investigated whether in human head and neck squamous cell carcinoma (HNSCC) high levels of expression of stress keratin 17 (K17) are associated with poor survival and resistance to immunotherapy.EXPERIMENTAL DESIGN: We investigated the role of K17 in regulating both the tumor microenvironment and immune responsiveness of HNSCC using a syngeneic mouse HNSCC model, MOC2. MOC2 gives rise to immunologically cold tumors that are resistant to immune-checkpoint blockade (ICB). We engineered multiple, independent K17 knockout (KO) MOC2 cell lines and monitored their growth and response to ICB. We also measured K17 expression in human HNSCC of patients undergoing ICB.
    RESULTS: MOC2 tumors were found to express K17 at high levels. When knocked out for K17 (K17KO MOC2), these cells formed tumors that grew slowly or spontaneously regressed and had a high CD8+ T-cell infiltrate in immunocompetent syngeneic C57BL/6 mice compared with parental MOC2 tumors. This phenotype was reversed when we depleted mice for T cells. Whereas parental MOC2 tumors were resistant to ICB treatment, K17KO MOC2 tumors that did not spontaneously regress were eliminated upon ICB treatment. In a cohort of patients with HNSCC receiving pembrolizumab, high K17 expression correlated with poor response. Single-cell RNA-sequencing analysis revealed broad differences in the immune landscape of K17KO MOC2 tumors compared with parental MOC2 tumors, including differences in multiple lymphoid and myeloid cell types.
    CONCLUSIONS: We demonstrate that K17 expression in HNSCC contributes to immune evasion and resistance to ICB treatment by broadly altering immune landscapes of tumors.
  17. Nat Commun. 2022 May 25. 13(1): 2906
      There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a "flame-retarding blanket" in the pre-metastatic niche specifically to extinguish the "fire" of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation.
  18. Cell. 2022 May 13. pii: S0092-8674(22)00532-3. [Epub ahead of print]
      X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.
    Keywords:  Mediator; X chromosome; XIST; breast tumorigenesis; differentiation; enhancers; homeostasis; human mammary stem cell; polycomb; transcriptional reactivation
  19. Nat Med. 2022 May 26.
      The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.
  20. Cell Discov. 2022 May 21. 8(1): 48
      PCIF1 (phosphorylated CTD interacting factor 1) is the first reported RNA N6,2'-O-dimethyladenosine (m6Am) methyltransferase. However, the pathological significance of PCIF1 and m6Am modification remains unknown. Here we find that both PCIF1 expression and m6Am modification are significantly elevated in gastric cancer tissues. Increased PCIF1 is associated with gastric cancer progression, and predicts poor prognosis. Silence of PCIF1 inhibits the proliferation and invasion of gastric cancer cells, and suppresses tumor growth and metastasis in mouse model. m6Am-seq analysis reveals TM9SF1 (transmembrane 9 superfamily member 1) as a target of PCIF1. PCIF1 modifies TM9SF1 mRNA with m6Am leading to decreased TM9SF1 translation. TM9SF1 reverses the effects of PCIF1 on gastric cancer cell aggressiveness. Collectively, our work uncovers an oncogenic function of PCIF1, providing insights into the critical role of m6Am modification in cancer progression.
  21. Cell Rep. 2022 May 24. pii: S2211-1247(22)00621-0. [Epub ahead of print]39(8): 110848
      Androgen receptor (AR) is expressed in both the prostate epithelium and the prostate stroma and plays diverse roles in prostate physiology. Although low expression of stromal AR is clinically associated with advanced cancer stage and worse outcome, whether stromal AR inhibits or promotes prostate cancer progression remains controversial. Here, we specifically delete AR in smooth muscle cells of the adult mouse prostate under two tumorigenic conditions, namely, the Hi-Myc genetic model and the T + E2 hormonal carcinogenesis model. Histology analyses show that stromal AR deletion exacerbates tumor progression phenotypes in both models. Furthermore, single-cell analyses of the tumor samples reveal that secretory luminal cells are the cell population particularly affected by stromal AR deletion, as they transition to a cellular state of potentiated PI3K-mTORC1 activities. Our results suggest that stromal AR normally inhibits prostate cancer progression by restraining secretory luminal cells and imply possible unintended negative effects of androgen deprivation therapy.
    Keywords:  CP: Cancer; Myc; PI3K; androgen receptor; hormonal carcinogenesis; luminal cell; mouse models; prostate cancer; single cell; stroma
  22. Nat Immunol. 2022 May 27.
      Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.
  23. Nat Rev Cancer. 2022 May 27.
      Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
  24. Sci Adv. 2022 May 27. 8(21): eabn3774
      The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer (GC) associated with low HER2 positivity rate and insensitivity to chemotherapy and immune checkpoint inhibitors. Here, we identify urokinase-type plasminogen activator receptor (uPAR) as a potential therapeutic target for DGC. We have developed a novel anti-uPAR monoclonal antibody, which targets the domains II and III of uPAR and blocks the binding of urokinase-type plasminogen activator to uPAR. We show that the combination of anti-uPAR and anti-Programmed cell death protein 1 (PD-1) remarkably inhibits tumor growth and prolongs survival via multiple mechanisms, using cell line-derived xenograft and patient-derived xenograft mouse models. Furthermore, uPAR chimeric antigen receptor-expressing T cells based on the novel anti-uPAR effectively kill DGC patient-derived organoids and exhibit impressive survival benefit in the established mouse models, especially when combined with PD-1 blockade therapy. Our study provides a new possibility of DGC treatment by targeting uPAR in a unique manner.
  25. PLoS One. 2022 ;17(5): e0267882
      Tumors display rich cellular heterogeneity and typically consist of multiple co-existing clones with distinct genotypic and phenotypic characteristics. The acquisition of resistance to chemotherapy has been shown to contribute to the development of aggressive cancer traits, such as increased migration, invasion and stemness. It has been hypothesized that collective cellular behavior and cooperation of cancer cell populations may directly contribute to disease progression and lack of response to treatment. Here we show that the spontaneous emergence of chemoresistance in a cancer cell population exposed to the selective pressure of a chemotherapeutic agent can result in the emergence of collective cell behavior, including cell-sorting, chemoprotection and collective migration. We derived several gemcitabine resistant subclones from the human pancreatic cancer cell line BxPC3 and determined that the observed chemoresistance was driven of a focal amplification of the chr11p15.4 genomic region, resulting in over-expression of the ribonucleotide reductase (RNR) subunit RRM1. Interestingly, these subclones display a rich cell-sorting behavior when cultured as mixed tumor spheroids. Furthermore, we show that chemoresistant cells are able to exert a chemoprotective effect on non-resistant cells in spheroid co-culture, whereas no protective effect is seen in conventional 2D culture. We also demonstrate that the co-culture of resistant and non-resistant cells leads to collective migration where resistant cells enable migration of otherwise non-migratory cells.