bims-tucedo Biomed News
on Tumor cell dormancy
Issue of 2021‒08‒08
28 papers selected by
Isabel Puig Borreil
Vall d’Hebron Institute of Oncology

  1. Sci Rep. 2021 Aug 04. 11(1): 15806
      Primary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 21 dormancy-cancer comparisons were mapped on protein-protein interaction networks and gene-regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to proliferative state were scored and filtered across all comparisons, leading to a dormancy-interaction network for the first time in the literature, which includes 139 genes and 1974 interactions. The dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic cancer.
  2. J Thorac Oncol. 2021 Aug 02. pii: S1556-0864(21)02332-7. [Epub ahead of print]
      A minor population of cancer cells may evade cell death from chemotherapy and targeted therapy by entering a reversible slow proliferation state known as the drug tolerant persister (DTP) state. This DTP state can allow cancer cells to survive drug therapy long enough for additional mechanisms of acquired drug resistance to develop. Thus, cancer persistence is a major obstacle to curing cancers, where insight into the biology of DTP cells and therapeutic strategies targeting this mechanism can have significant clinical implications. There is emerging evidence that DTP cells adapt to new environments through epigenomic modification, transcriptomic regulation, flexible energy metabolism, and interactions with the tumor microenvironment. Herein, we review and discuss the various proposed mechanisms of cancer persister cells and the molecular features underlying the DTP state, with insights into the potential therapeutic strategies to conquer DTP cells and prevent cancer recurrence or therapeutic failures.
    Keywords:  Drug persisters; EGFR TKI; chemotherapy; drug resistance; targeted therapy; tumor dormancy
  3. Cancer Discov. 2021 Aug;11(8): 1874-1876
      Inhibitors of KRASG12C that bind the target in its inactive conformation and lock it in off-mode have shown early signs of clinical activity in patients with KRAS G12C-mutant lung cancer, but responses tend to be short-lived and invariably prelude the development of acquired resistance through largely unexplored mechanisms. A new study describes the emergence of RAS-MAPK heterogeneous subclonal alterations in a patient relapsed on a KRASG12C inactive-state inhibitor and identifies a novel KRASY96D-resistant variant that is druggable by a next-generation compound capable of associating with KRASG12C in its active configuration.See related article by Tanaka et al., p. 1913.
  4. J Hematol Oncol. 2021 Aug 04. 14(1): 120
      BACKGROUND: Pancreatic cancer's poor prognosis is caused by distal metastasis, which is associated with epigenetic changes. However, the role of the 3D epigenome in pancreatic cancer biology, especially its metastasis, remains unclear.METHODS: Here, we developed high-resolution 3D epigenomic maps of cells derived from normal pancreatic epithelium, primary and metastatic pancreatic cancer by in situ Hi-C, ChIP-seq, ATAC-seq, and RNA-seq to identify key genes involved in pancreatic cancer metastasis RESULTS: We found that A/B compartments, contact domains, and chromatin loops changed significantly in metastatic pancreatic cancer cells, which are associated with epigenetic state alterations. Moreover, we found that upregulated genes, which were located in switched compartments, changed contact domains, and metastasis-specific enhancer-promoter loops, were related to cancer metastasis and poor prognosis of patients with pancreatic cancer. We also found that transcription factors in specific enhancer-promoter loop formation were also associated with metastasis. Finally we demonstrated that LIPC, looped to metastasis-specific enhancers, could promote pancreatic cancer metastasis.
    CONCLUSIONS: These results highlight the multiscale 3D epigenome reprogramming during pancreatic cancer metastasis and expand our knowledge of mechanisms of gene regulation during pancreatic cancer metastasis.
    Keywords:  Epigenetics; Hi-C; Metastasis; Multi-omics; Pancreatic cancer
  5. Nat Cell Biol. 2021 Aug 02.
      Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.
  6. Elife. 2021 Aug 03. pii: e67750. [Epub ahead of print]10
      Colorectal cancer (CRC) remains a leading cause of cancer death, and its mortality is associated with metastasis and chemoresistance. We demonstrate that oxaliplatin-resistant CRC cells are sensitized to TRAIL-mediated apoptosis. Oxaliplatin-resistant cells exhibited transcriptional downregulation of caspase-10, but this had minimal effects on TRAIL sensitivity following CRISPR-Cas9 deletion of caspase-10 in parental cells. Sensitization effects in oxaliplatin-resistant cells were found to be a result of increased DR4, as well as significantly enhanced DR4 palmitoylation and translocation into lipid rafts. Raft perturbation via nystatin and resveratrol significantly altered DR4/raft colocalization and TRAIL sensitivity. Blood samples from metastatic CRC patients were treated with TRAIL liposomes, and a 57% reduction of viable circulating tumor cells (CTCs) was observed. Increased DR4/lipid raft colocalization in CTCs was found to correspond with increased oxaliplatin resistance and increased efficacy of TRAIL liposomes. To our knowledge, this is the first study to investigate the role of lipid rafts in primary CTCs.
    Keywords:  TRAIL; cancer biology; death receptors; human; lipid rafts; metastasis; palmitoylation; physics of living systems
  7. Nat Rev Cancer. 2021 Aug 02.
      Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
  8. Oncogene. 2021 Aug 06.
      N6-methyladenosine (m6A) is the most prevalent RNA epigenetic regulator in cancer. However, the understanding of m6A modification on lipid metabolism regulation in colorectal cancer (CRC) is very limited. Here, we observed that human CRCs exhibited increased m6A mRNA methylation mediated by dysregulation of m6A erasers and readers. By performing methylated RNA-immunoprecipitation sequencing (MeRIP-seq) and transcriptomic sequencing (RNA-seq), we identified DEGS2 as a downstream target of m6A dysregulation. Overexpression or knockdown of DEGS2 confirmed the role of DEGS2 in proliferation, invasion and metastasis of CRC both in vitro and in vivo. Mechanistic studies identified the specific m6A modification site within DEGS2 mRNA, and mutation of this target site was found to drastically enhance the proliferative and invasive ability of CRC cells in vitro and promote tumorigenicity in vivo. Lipidome analysis showed that lipid metabolism was dysregulated in CRC. Moreover, ceramide synthesis was suppressed due to DEGS2 upregulation mediated by m6A modification in CRC tissues. Our findings highlight that the function of DEGS2 m6A methylation in CRC and extend the understanding of the importance of RNA epigenetics in cancer biology.
  9. Cancer Res. 2021 Aug 04. pii: canres.0753.2021. [Epub ahead of print]
      Hypoxia is known to be commonly present in breast tumor microenvironments. Stem-like cells that repopulate breast tumors, termed tumor-repopulating cells (TRC), thrive under hypoxic conditions, but the underlying mechanism remains unclear. Here we show that hypoxia promotes the growth of breast TRCs through metabolic reprogramming. Hypoxia mobilized transcription factors HIF-1α and FoxO1 and induced epigenetic reprogramming to upregulate cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme that initiates gluconeogenesis. PCK1 subsequently triggered retrograde carbon flow from gluconeogenesis to glycogenesis, glycogenolysis, and the pentose phosphate pathway. The resultant NADPH facilitated reduced glutathione production, leading to a moderate increase of reactive oxygen species that stimulated hypoxic breast TRC growth. Notably, this metabolic mechanism was absent in differentiated breast tumor cells. Targeting PCK1 synergized with paclitaxel to reduce the growth of triple-negative breast cancer (TNBC). These findings uncover an altered glycogen metabolic program in breast cancer, providing potential metabolic strategies to target hypoxic breast TRCs and TNBC.
  10. Dev Cell. 2021 Aug 02. pii: S1534-5807(21)00592-X. [Epub ahead of print]
      Aneuploidy is a ubiquitous feature of human tumors, but the acquisition of aneuploidy typically antagonizes cellular fitness. To investigate how aneuploidy could contribute to tumor growth, we triggered periods of chromosomal instability (CIN) in human cells and then exposed them to different culture environments. We discovered that transient CIN reproducibly accelerates the acquisition of resistance to anti-cancer therapies. Single-cell sequencing revealed that these resistant populations develop recurrent aneuploidies, and independently deriving one chromosome-loss event that was frequently observed in paclitaxel-resistant cells was sufficient to decrease paclitaxel sensitivity. Finally, we demonstrated that intrinsic levels of CIN correlate with poor responses to numerous therapies in human tumors. Our results show that, although CIN generally decreases cancer cell fitness, it also provides phenotypic plasticity to cancer cells that can allow them to adapt to diverse stressful environments. Moreover, our findings suggest that aneuploidy may function as an under-explored cause of therapy failure.
    Keywords:  CIN; aneuploidy; cancer; drug resistance; evolution
  11. Dev Cell. 2021 Jul 30. pii: S1534-5807(21)00562-1. [Epub ahead of print]
      Mitotic errors lead to aneuploidy, a condition of karyotype imbalance, frequently found in cancer cells. Alterations in chromosome copy number induce a wide variety of cellular stresses, including genome instability. Here, we show that cancer cells might exploit aneuploidy-induced genome instability and the resulting gene copy-number changes to survive under conditions of selective pressure, such as chemotherapy. Resistance to chemotherapeutic drugs was dictated by the acquisition of recurrent karyotypes, indicating that gene dosage might play a role in driving chemoresistance. Thus, our study establishes a causal link between aneuploidy-driven changes in gene copy number and chemoresistance and might explain why some chemotherapies fail to succeed.
    Keywords:  aneuploidy; cancer; chemotherapy; drug resistance; genome instability
  12. Oncogene. 2021 Aug 02.
      Anoikis is a type of programmed cell death induced by loss of anchorage to the extracellular matrix (ECM). Anoikis resistance (AR) is crucial for the survival of metastatic cancer cells in blood, lymphatic circulation and distant organs. Compared to ordinary cancer cells, anoikis resistant cancer cells undergo various cellular and molecular alterations, probably characterizing the cells with unique features not limited to anoikis resistance. However, the molecular mechanisms connecting anoikis resistance to other metastatic properties are still poorly understood. Here, the biological interaction between anoikis resistance and angiogenesis as well as their involvement into peritoneal metastasis of gastric cancer (GC) were investigated in vitro and in vivo. The prognostic value of key components involved in this interaction was evaluated in the GC cohort. Compared to ordinary GC cells, GCAR cells exhibited stronger metastatic and pro-angiogenic traits corresponding to elevated PDGFB secretion. Mechanistically, transcription factor C/EBPβ facilitated PDGFB transcription by directly binding to and interacting with PDGFB promoter elements, subsequently increasing PDGFB secretion. Secreted PDGFB promoted the survival of detached GC cells through a C/EBPβ-dependent self-feedback loop. Moreover, secreted PDGFB promoted angiogenesis in metastases via activation of the MAPK/ERK signaling pathway in vascular endothelial cells. Both C/EBPβ activation level and PDGFB expression were significantly elevated in GC and correlated with metastatic progression and poor prognosis of patients with GC. Overall, interaction between GCAR cells and vascular endothelial cells promotes angiogenesis and peritoneal metastasis of GC based on C/EBPβ-mediated PDGFB autocrine and paracrine signaling. C/EBPβ-PDGFB-PDGFRβ-MAPK axis promises to be potential prognostic biomarkers and therapeutic targets for peritoneal metastasis of GC.
  13. J Biol Chem. 2021 Jul 30. pii: S0021-9258(21)00834-6. [Epub ahead of print] 101032
      The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and to undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BACH1 (BTB and CNC homology 1), a heme-regulated transcription factor that represses genes involved in iron- and heme-metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell-cell adhesion and oxidative phosphorylation, but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feed-forward loop of EMT. By synthesizing these observations, we propose a "two-faced BACH1 model", which accounts for the dynamic switching between metastasis and stress-resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
    Keywords:  BACH1; NRF2; cancer; epithelial-mesenchymal transition; ferroptosis; glycolysis; heme; iron; metastasis; transcription factor
  14. Theranostics. 2021 ;11(16): 7640-7657
      Background: Since primary prostate cancer (PCa) can advance to the life-threatening metastatic PCa, exploring the molecular mechanisms underlying PCa metastasis is crucial for developing the novel targeted preventive strategies for decreasing the mortality of PCa. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and its specific roles in PCa progression remains elusive. Methods: Western blotting, quantitative real-time PCR and immunohistochemical analyses were used to detect target gene expression in PCa cells in vitro and prostate tissues from patients. RNA immunoprecipitation was conducted to analyze the specific binding of mRNA to the target protein. Migration and invasion assays were used to assess the migratory capacities of cancer cells. The correlation between target gene expression and survival rate of PCa patients was analyzed based the TCGA database. Results: We found that total RNA N6-methyladenosine (m6A) modification levels were markedly upregulated in human PCa tissues due to increased expression of methyltransferase like 3 (METTL3). Further studies revealed that the migratory and invasive capacities of PCa cells were markedly suppressed upon METTL3 knockdown. Mechanistically, METTL3 mediates m6A modification of USP4 mRNA at A2696, and m6A reader protein YTHDF2 binds to and induces degradation of USP4 mRNA by recruiting RNA-binding protein HNRNPD to the mRNA. Decrease of USP4 fails to remove the ubiquitin group from ELAVL1 protein, resulting in a reduction of ELAVL1 protein. Lastly, downregulation of ELAVL1 in turn increases ARHGDIA expression, promoting migration and invasion of PCa cells. Conclusions: Our findings highlight the role of METTL3 in modulating invasion and metastasis of PCa cells, providing insight into promising therapeutic strategies for hindering PCa progressing to deadly metastases.
    Keywords:  METTL3; m6A; metastasis; prostate cancer; therapeutic strategies
  15. Theranostics. 2021 ;11(16): 7658-7670
      SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.
    Keywords:  EMT; SNAI1; STK39; phosphorylation; stabilization
  16. Cancer Res. 2021 Aug 06. pii: canres.0494.2021. [Epub ahead of print]
      Pseudogenes may play important roles in cancer. Here, we explore the mechanism and function of a pseudogene WTAPP1 in the progress of pancreatic ductal adenocarcinoma (PDAC). WTAPP1 RNA was significantly elevated in PDAC and was associated with poor prognosis in patients. Overexpression of WTAPP1 RNA promoted PDAC proliferation and invasiveness in vitro and in vivo. Mechanistically, N6-methyladenosine (m6A) modification stabilized WTAPP1 RNA via CCHC-type zinc finger nucleic acid binding protein (CNBP), resulting in increased levels of WTAPP1 RNA in PDAC cells. Excessive WTAPP1 RNA bound its protein-coding counterpart WT1 associated protein (WTAP) mRNA and recruited more EIF3 translation initiation complex to promote WTAP translation. Increased WTAP protein enhanced the activation of Wnt signaling and provoked the malignant phenotypes of PDAC. Decreasing WTAPP1 RNA significantly suppressed the in vivo growth and metastasis of PDAC cell lines and patient-derived xenografts. These results indicate that m6A-mediated increases in WTAPP1 expression promotes PDAC progression and thus may serve as a therapeutic target.
  17. Cancer Discov. 2021 Aug 06.
      CD93/IGFBP7 pathway disruption normalizes tumor vasculature and increases immune infiltration.
  18. Cancer Discov. 2021 Aug 03. pii: candisc.0441.2021. [Epub ahead of print]
      Small cell lung cancer (SCLC) has limited therapeutic options and an exceptionally poor prognosis. Understanding the oncogenic drivers of SCLC may help define novel therapeutic targets. Recurrent genomic rearrangements have been identified in SCLC, most notably an in-frame gene fusion between RLF and MYCL found in up to 7% of the predominant ASCL1-expressing subtype (SCLC-A). To explore the role of this fusion in oncogenesis and tumor progression, we used CRISPR/Cas9 somatic editing to generate a Rlf-Mycl-driven mouse model of SCLC. RLF-MYCL fusion accelerated transformation and proliferation of murine SCLC and increased metastatic dissemination and the diversity of metastatic sites. Tumors from the RLF-MYCL genetically-engineered mouse model displayed gene expression similarities with human RLF-MYCL SCLC. Together our studies support RLF-MYCL as the first demonstrated fusion oncogenic driver in SCLC and provide a new preclinical mouse model for the study of this subtype of SCLC.
  19. Cancer Res. 2021 Aug 06. pii: canres.0431.2021. [Epub ahead of print]
      Transforming growth factor-β (TGF-β) is pro-metastatic in advanced cancers and its biological activities are mainly mediated by the Smad family of proteins. Smad4 is the central signal transducer and transcription factor in the TGF-β pathway, yet the underlying mechanisms that govern transcriptional activities of Smad4 are not fully understood. Here, we show that AMBRA1, a member of the DDB1 and CUL4-associated factor (DCAF) family of proteins, serves as the substrate receptor for Smad4 in the CUL4-RING (CRL4) ubiquitin ligase complex. The CRL4-AMBRA1 ubiquitin ligase mediates non-proteolytic polyubiquitylation of Smad4 to enhance its transcriptional functions. Consequently, AMBRA1 potentiated TGF-β signaling and critically promoted TGF-β-induced epithelial-to-mesenchymal transition, migration, and invasion of breast cancer cells. Mouse models of breast cancer demonstrated that AMBRA1 promotes metastasis. Collectively, these results show that CRL4-AMBRA1 facilitates TGF-β-driven metastasis by increasing Smad4 polyubiquitylation, suggesting AMBRA1 may serve as a new therapeutic target in metastatic breast cancer.
  20. Cell Stem Cell. 2021 Jul 28. pii: S1934-5909(21)00288-5. [Epub ahead of print]
      It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.
    Keywords:  MYC; TFEB; TfR1; anabolism; endocytosis; erythropoiesis; long-term HSC; lysosomes; myelopoiesis; self-renewal
  21. Nat Commun. 2021 08 03. 12(1): 4671
      Triple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSCs) have been proposed to represent a chemotherapy-resistant subpopulation responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. Here, we describe a novel multi-kinase inhibitor, 108600, that targets the TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of BCSCs and induces G2M arrest and apoptosis of TNBC cells. In vivo, 108600 treatment of mice bearing triple negative tumors results in the induction of apoptosis and overcomes chemotherapy resistance. Finally, treatment with 108600 and chemotherapy suppresses growth of pre-established TNBC metastases, providing additional support for the clinical translation of this agent to clinical trials.
  22. Lancet Oncol. 2021 Aug;pii: S1470-2045(21)00326-0. [Epub ahead of print]22(8): e342
  23. Mol Cell. 2021 Jul 29. pii: S1097-2765(21)00555-4. [Epub ahead of print]
      Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.
  24. Theranostics. 2021 ;11(16): 7844-7868
      Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
    Keywords:  Autophagy; Cancer stem cells; GLS1; Prostate cancer; Radioresistance
  25. Trends Endocrinol Metab. 2021 Jul 30. pii: S1043-2760(21)00154-5. [Epub ahead of print]
      Metabolic reprogramming is not only an emerging hallmark of cancer, but also an essential regulator of cancer cell adaptation to the microenvironment. Metabolic imaging targeting metabolic signatures has been widely used for breast cancer diagnosis. However, limited implications have been explored for monitoring breast cancer therapy response, although metabolic plasticity is notably associated with therapy resistance. In this review, we focus on the metabolic alterations upon breast cancer therapy and their potential for evaluating breast cancer therapeutic responses. We summarize the metabolic network and regulatory changes upon breast cancer therapy in terms of cancer pathological and genetic differences and discuss the implications of metabolic imaging with various probes in selecting target beneficiaries for precision treatment.
    Keywords:  breast cancer; metabolic imaging; metabolic reprogramming; therapeutic response
  26. Nat Methods. 2021 Aug 02.
      Understanding intratumoral heterogeneity-the molecular variation among cells within a tumor-promises to address outstanding questions in cancer biology and improve the diagnosis and treatment of specific cancer subtypes. Single-cell analyses, especially RNA sequencing and other genomics modalities, have been transformative in revealing novel biomarkers and molecular regulators associated with tumor growth, metastasis and drug resistance. However, these approaches fail to provide a complete picture of tumor biology, as information on cellular location within the tumor microenvironment is lost. New technologies leveraging multiplexed fluorescence, DNA, RNA and isotope labeling enable the detection of tens to thousands of cancer subclones or molecular biomarkers within their native spatial context. The expeditious growth in these techniques, along with methods for multiomics data integration, promises to yield a more comprehensive understanding of cell-to-cell variation within and between individual tumors. Here we provide the current state and future perspectives on the spatial technologies expected to drive the next generation of research and diagnostic and therapeutic strategies for cancer.
  27. Mol Cancer Res. 2021 Aug 04. pii: molcanres.0284.2021. [Epub ahead of print]
      Heterozygous IDH R132H mutation is an early event during gliomagenesis. Clinically, glioma patients carrying mutant IDH1 respond better to anti-tumor therapies. However, the mechanism by which IDH1 mutations contribute to gliomagenesis and therapeutic response remains elusive. Here we report that senescence is involved in the improved therapeutic responses of mutant IDH1 glioma cells. Knocking-in IDH1R132H/WT in glioma cells significantly enhanced glioma cell senescence in response to temozolomide and radiation via a DNA-damage mediated mechanism. We further asked if senescence plays a role in IDH1R132H/WT-induced gliomagenesis. Together with ATRX knockout and p53/RB loss, IDH1R132H/WT transformed non-neoplastic human astroglial cells to form tumors in mouse brains. In-depth characterization revealed that a subset of these pre-cancerous cells underwent senescence-like phenotypic changes, including flat and enlarged cell morphology, increased senescence marker expression, decreased cell proliferation, and cell cycle arrest at the G2/M phase. Mechanistic studies indicated that the combination of glioma driver genes (p53/RB/IDH1/ATRX) dramatically increased DNA damage and activated DNA damage response pathways ATR/ATR and Chk1/Chk2 in senescent cells. To determine how senescent cells drive tumor formation, we investigated non-cell-autonomous mechanisms such as senescence-associated secretory phenotype (SASP), a panel of pro-inflammatory and tissue-remodeling factors implicated in a tumor-permissive microenvironment. We found that astroglial cells carrying p53/RB/ATRX loss and IDH1R132H/WT upregulated key factors in SASP via an epigenetic-mediated mechanism. Our work suggests that drugs that specifically eliminate senescent cells could help kill pre-cancerous cells and senescent tumor cells following anti-tumor therapies. Implications: This work reveals senescence as a novel mechanism of IDH mutant-mediated biological impact and describes new therapeutic opportunities concerning IDH1 mutant gliomas.