bims-tucedo Biomed News
on Tumor cell dormancy
Issue of 2020‒12‒13
twenty-two papers selected by
Isabel Puig Borreil
Vall d’Hebron Institute of Oncology


  1. Nat Commun. 2020 12 08. 11(1): 6298
    Song M, Yeku OO, Rafiq S, Purdon T, Dong X, Zhu L, Zhang T, Wang H, Yu Z, Mai J, Shen H, Nixon B, Li M, Brentjens RJ, Ma X.
      Immunosuppressive tumor microenvironment (TME) and ascites-derived spheroids in ovarian cancer (OC) facilitate tumor growth and progression, and also pose major obstacles for cancer therapy. The molecular pathways involved in the OC-TME interactions, how the crosstalk impinges on OC aggression and chemoresistance are not well-characterized. Here, we demonstrate that tumor-derived UBR5, an E3 ligase overexpressed in human OC associated with poor prognosis, is essential for OC progression principally by promoting tumor-associated macrophage recruitment and activation via key chemokines and cytokines. UBR5 is also required to sustain cell-intrinsic β-catenin-mediated signaling to promote cellular adhesion/colonization and organoid formation by controlling the p53 protein level. OC-specific targeting of UBR5 strongly augments the survival benefit of conventional chemotherapy and immunotherapies. This work provides mechanistic insights into the novel oncogene-like functions of UBR5 in regulating the OC-TME crosstalk and suggests that UBR5 is a potential therapeutic target in OC treatment for modulating the TME and cancer stemness.
    DOI:  https://doi.org/10.1038/s41467-020-20140-0
  2. Trends Cancer. 2020 Dec 03. pii: S2405-8033(20)30278-8. [Epub ahead of print]
    Bacci M, Lorito N, Smiriglia A, Morandi A.
      Lipid metabolic reprogramming is an established trait of cancer metabolism that guides response and resistance to antitumoral therapies. Enhanced lipogenesis, increased lipid content (either free or stored into lipid droplets), and lipid-dependent catabolism sustain therapy desensitization and the emergence of a resistant phenotype of tumor cells exposed to chemotherapy or targeted therapies. Aberrant lipid metabolism, therefore, has emerged as a potential metabolic vulnerability of therapy-resistant cancers that could be exploited for therapeutic interventions or for identifying tumors more likely to respond to further lines of therapies. This review gathers recent findings on the role of aberrant lipid metabolism in influencing antitumoral therapy response and in sustaining the emergence of resistance.
    Keywords:  lipid droplets; lipid metabolism; metabolic reprogramming; metabolic targeting; therapy resistance
    DOI:  https://doi.org/10.1016/j.trecan.2020.10.004
  3. Clin Cancer Res. 2020 Dec 08. pii: clincanres.1720.2020. [Epub ahead of print]
    Garrido-Castro AC, Spurr LF, Hughes ME, Li YY, Cherniack AD, Kumari P, Lloyd MR, Bychkovsky B, Barroso-Sousa R, Di Lascio S, Jain E, Files JL, Mohammed-Abreu A, Krevalin M, MacKichan C, Barry WT, Guo H, Xia D, Cerami E, Rollins BJ, MacConaill LE, Lindeman NI, Krop I, Johnson BE, Wagle N, Winer EP, Dillon DA, Lin NU.
      PURPOSE: In contrast to recurrence after initial diagnosis of stage I-III breast cancer (recurrent metastatic breast cancer, rMBC), de novo metastatic breast cancer (dnMBC) represents a unique setting to elucidate metastatic drivers in the absence of treatment selection. We present the genomic landscape of dnMBC and association with overall survival (OS).EXPERIMENTAL DESIGN: Targeted DNA sequencing (OncoPanel) was prospectively performed on either primary or metastatic tumors from 926 patients (212 dnMBC; 714 rMBC). Single-nucleotide variants, copy number variations and tumor mutational burden (TMB) in treatment-naïve dnMBC primary tumors were compared to primary tumors in patients who ultimately developed rMBC, and correlated with OS across all dnMBC.
    RESULTS: When comparing primary tumors by subtype, MYB amplification was enriched in triple-negative dnMBC vs. rMBC (21.1% vs. 0%, p=0.0005, q=0.111). Mutations in KMTD2, SETD2 and PIK3CA were more prevalent, and TP53 and BRCA1 less prevalent, in primary HR+/HER2- tumors of dnMBC vs. rMBC, though not significant after multiple comparison adjustment. Alterations associated with shorter OS in dnMBC included TP53 (wild-type: 79.7 months; altered: 44.2 months; p=0.008, q=0.107), MYC (79.7 vs. 23.3 months; p=0.0003, q=0.011) and cell-cycle (122.7 vs. 54.9 months; p=0.034, q=0.245) pathway genes. High TMB correlated with better OS in triple-negative dnMBC (p=0.041).
    CONCLUSIONS: Genomic differences between treatment-naïve dnMBC and primary tumors of patients who developed rMBC may provide insight into mechanisms underlying metastatic potential and differential therapeutic sensitivity in dnMBC. Alterations associated with poor OS in dnMBC highlight the need for novel approaches to overcome potential intrinsic resistance to current treatments.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-1720
  4. Cell Rep Med. 2020 Nov 17. 1(8): 100131
    Brown WS, McDonald PC, Nemirovsky O, Awrey S, Chafe SC, Schaeffer DF, Li J, Renouf DJ, Stanger BZ, Dedhar S.
      Activating KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs), yet KRAS has remained a difficult target to inhibit pharmacologically. Here, we demonstrate, using several human and mouse models of PDACs, rapid acquisition of tumor resistance in response to targeting KRAS or MEK, associated with integrin-linked kinase (ILK)-mediated increased phosphorylation of the mTORC2 component Rictor, and AKT. Although inhibition of mTORC1/2 results in a compensatory increase in ERK phosphorylation, combinatorial treatment of PDAC cells with either KRAS (G12C) or MEK inhibitors, together with mTORC1/2 inhibitors, results in synergistic cytotoxicity and cell death reflected by inhibition of pERK and pRictor/pAKT and of downstream regulators of protein synthesis and cell survival. Relative to single agents alone, this combination leads to durable inhibition of tumor growth and metastatic progression in vivo and increased survival. We have identified an effective combinatorial treatment strategy using clinically viable inhibitors, which can be applied to PDAC tumors with different KRAS mutations.
    Keywords:  AMG 510; KRAS; PDAC; acquired resistance; cellular toxicity; protein translation; signal transduction; tumor regression
    DOI:  https://doi.org/10.1016/j.xcrm.2020.100131
  5. Nat Commun. 2020 12 09. 11(1): 6311
    Ebright RY, Zachariah MA, Micalizzi DS, Wittner BS, Niederhoffer KL, Nieman LT, Chirn B, Wiley DF, Wesley B, Shaw B, Nieblas-Bedolla E, Atlas L, Szabolcs A, Iafrate AJ, Toner M, Ting DT, Brastianos PK, Haber DA, Maheswaran S.
      Blood-borne metastasis to the brain is a major complication of breast cancer, but cellular pathways that enable cancer cells to selectively grow in the brain microenvironment are poorly understood. We find that cultured circulating tumor cells (CTCs), derived from blood samples of women with advanced breast cancer and directly inoculated into the mouse frontal lobe, exhibit striking differences in proliferative potential in the brain. Derivative cell lines generated by serial intracranial injections acquire selectively increased proliferative competency in the brain, with reduced orthotopic tumor growth. Increased Hypoxia Inducible Factor 1A (HIF1A)-associated signaling correlates with enhanced proliferation in the brain, and shRNA-mediated suppression of HIF1A or drug inhibition of HIF-associated glycolytic pathways selectively impairs brain tumor growth while minimally impacting mammary tumor growth. In clinical specimens, brain metastases have elevated HIF1A protein expression, compared with matched primary breast tumors, and in patients with brain metastases, hypoxic signaling within CTCs predicts decreased overall survival. The selective activation of hypoxic signaling by metastatic breast cancer in the brain may have therapeutic implications.
    DOI:  https://doi.org/10.1038/s41467-020-20144-w
  6. EMBO Mol Med. 2020 Dec 07. e12798
    Lu W, Yu W, He J, Liu W, Yang J, Lin X, Zhang Y, Wang X, Jiang W, Luo J, Zhang Q, Yang H, Peng S, Yi Z, Ren S, Chen J, Siwko S, Nussinov R, Cheng F, Zhang H, Liu M.
      Immune checkpoint blockade (ICB) has a limited effect on colorectal cancer, underlining the requirement of co-targeting the complementary mechanisms. Here, we identified prostaglandin E2 (PGE2 ) receptor 4 (EP4) as the master regulator of immunosuppressive myeloid cells (IMCs), which are the major driver of resistance to ICB therapy. PGE2 -bound EP4 promotes the differentiation of immunosuppressive M2 macrophages and myeloid-derived suppressor cells (MDSCs) and reduces the expansion of immunostimulated M1 macrophages. To explore the immunotherapeutic role of EP4 signaling, we developed a novel and selective EP4 antagonist TP-16. TP-16 effectively blocked the function of IMCs and enhanced cytotoxic T-cell-mediated tumor elimination in vivo. Cell co-culture experiments revealed that TP-16 promoted T-cell proliferation, which was impaired by tumor-derived CD11b+ myeloid cells. Notably, TP-16 and anti-PD-1 combination therapy significantly impeded tumor progression and prolonged mice survival. We further demonstrated that TP-16 increased responsiveness to anti-PD-1 therapy in an IMC-related spontaneous colorectal cancer mouse model. In summary, this study demonstrates that inhibition of EP4-expressing IMCs may offer a potential strategy for enhancing the efficacy of immunotherapy for colorectal cancer.
    Keywords:  colorectal cancer; immunosuppressive myeloid cells; immunotherapy; prostaglandin E2 receptor 4
    DOI:  https://doi.org/10.15252/emmm.202012798
  7. Oncogene. 2020 Dec 07.
    Kaushik G, Seshacharyulu P, Rauth S, Nallasamy P, Rachagani S, Nimmakayala RK, Vengoji R, Mallya K, Chirravuri-Venkata R, Singh AB, Foster JM, Ly QP, Smith LM, Lele SM, Malafa MP, Jain M, Ponnusamy MP, Batra SK.
      Pancreatic cancer (PC) is difficult to defeat due to mechanism (s) driving metastasis and drug resistance. Cancer stemness is a major challenging phenomenon associated with PC metastasis and limiting therapy efficacy. In this study, we evaluated the pre-clinical and clinical significance of eradicating pancreatic cancer stem cells (PCSC) and its components using a pan-EGFR inhibitor afatinib in combination with gemcitabine. Afatinib in combination with gemcitabine significantly reduced KrasG12D/+; Pdx-1 Cre (KC) (P < 0.01) and KrasG12D/+; p53R172H/+; Pdx-1 Cre (KPC) (P < 0.05) derived mouse tumoroids and KPC-derived murine syngeneic cell line growth compared to gemcitabine/afatinib alone treatment. The drug combination also reduced PC xenograft tumor burden (P < 0.05) and the incidence of metastasis by affecting key stemness markers, as confirmed by co-localization studies. Moreover, the drug combination significantly decreases the growth of various PC patient-derived organoids (P < 0.001). We found that SOX9 is significantly overexpressed in high-grade PC tumors (P < 0.05) and in chemotherapy-treated patients compared to chemo-naïve patients (P < 0.05). These results were further validated using publicly available datasets. Moreover, afatinib alone or in combination with gemcitabine decreased stemness and tumorspheres by reducing phosphorylation of EGFR family proteins, ERK, FAK, and CSC markers. Mechanistically, afatinib treatment decreased CSC markers by downregulating SOX9 via FOXA2. Indeed, EGFR and FOXA2 depletion reduced SOX9 expression in PCSCs. Taken together, pan-EGFR inhibition by afatinib impedes PCSCs growth and metastasis via the EGFR/ERK/FOXA2/SOX9 axis. This novel mechanism of pan-EGFR inhibitor and its ability to eradicate CSC may serve as a tailor-made approach to enhance chemotherapeutic benefits in other cancer types.
    DOI:  https://doi.org/10.1038/s41388-020-01564-w
  8. Nature. 2020 Dec;588(7837): 331-336
    Jin X, Demere Z, Nair K, Ali A, Ferraro GB, Natoli T, Deik A, Petronio L, Tang AA, Zhu C, Wang L, Rosenberg D, Mangena V, Roth J, Chung K, Jain RK, Clish CB, Vander Heiden MG, Golub TR.
      Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain-a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research.
    DOI:  https://doi.org/10.1038/s41586-020-2969-2
  9. Mol Cancer Res. 2020 Dec 09. pii: molcanres.0557.2020. [Epub ahead of print]
    Sun T, Zhang K, Pangeni RP, Wu J, Li W, Du Y, Guo Y, Chaurasiya S, Arvanitis L, Raz DJ.
      Potential roles of euchromatic histone methyltransferase 2 (EHMT2 or G9a) in invasion and metastasis are not well understood in non-small cell lung cancer (NSCLC). Here we investigated the effect and underlying mechanisms of G9a, and therapeutic implications of targeting G9a in the invasion and metastasis of NSCLC. Overexpression of G9a significantly enhanced in vitro proliferation and invasion, while knockdown of G9a drastically suppressed in vivo growth and metastasis of A549 and H1299 NSCLC cells. Knockdown or inhibition of G9a significantly decreased the expression of FAK protein and activation of FAK pathway. Additionally, FAK siRNA and potent FAK inhibitor, partially abolished the G9a-enhanced invasion in these NSCLC cells. Furthermore, targeting G9a was found to suppress nuclear factor-kappa B (NF-κB) transcriptional activity in NSCLC cells through stabilizing NF-kappa;B inhibitor alpha (IκBα), while an NF-κB inhibitor Parthenilide partially abolished the G9a-enhanced FAK activation, which suggests that G9a-enhanced invasion and activation of FAK is mediated by elevated NF-κB activity. Notably, a strong positive correlation between the immunohistochemical staining of G9a and phosphorylated FAK proteins was identified in H1299 xenografts and 159 cases of NSCLC tissues (R = 0.408). Implications: The findings of this study strongly demonstrate that G9a may promote invasion and metastasis of NSCLC cells by enhancing FAK signaling pathway via elevating NF-kappa;B transcriptional activity, indicating potential significance and therapeutic implications of these pathways in the invasion and metastasis of NSCLCs that overexpress G9a protein.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0557
  10. Clin Cancer Res. 2020 Dec 07. pii: clincanres.3901.2020. [Epub ahead of print]
    Singh S, Jaigirdar AA, Mulkey F, Cheng J, Hamed SS, Li Y, Liu J, Zhao H, Goheer A, Helms WS, Wang X, Agarwal R, Pragani R, Korsah K, Tang S, Leighton J, Rahman A, Beaver JA, Pazdur R, Theoret MR, Singh H.
      On June 15, 2020, the Food and Drug Administration granted accelerated approval to lurbinectedin for the treatment of adult patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy. Approval was granted based on the clinically meaningful effects on overall response rate (ORR) and duration of response (DOR), and the safety profile observed in a multicenter, open-label, multi-cohort clinical trial (PM1183-B-005-14, NCT02454972), referred to as Study B-005, in patients with advanced solid tumors. The trial included a cohort of 105 patients with metastatic SCLC who had disease progression on or after platinum-based chemotherapy. The confirmed ORR determined by investigator assessment using RECIST 1.1 in the approved SCLC patient population was 35% (95% CI: 26, 45), with a median DOR of 5.3 (95% CI: 4.1, 6.4) months. The drug label includes warnings and precautions for myelosuppression, hepatotoxicity, and embryo-fetal toxicity. This is the first drug approved by the FDA in over 20 years in the second line for patients with metastatic SCLC. Importantly, this approval includes an indication for patients who have platinum-resistant disease, representing an area of particular unmet need.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-3901
  11. Cells. 2020 Dec 04. pii: E2601. [Epub ahead of print]9(12):
    Swayden M, Chhouri H, Anouar Y, Grumolato L.
      The capacity of cancer to adapt to treatment and evolve is a major limitation for targeted therapies. While the role of new acquired mutations is well-established, recent findings indicate that resistance can also arise from subpopulations of tolerant/persister cells that survive in the presence of the treatment. Different processes contribute to the emergence of these cells, including pathway rebound through the release of negative feedback loops, transcriptional rewiring mediated by chromatin remodeling and autocrine/paracrine communication among tumor cells and within the tumor microenvironment. In this review, we discuss the non-genetic mechanisms that eventually result in cancer resistance to targeted therapies, with a special focus on those involving changes in gene expression.
    Keywords:  BRAF; EGFR; cell signaling; drug resistance; intratumor heterogeneity; lung cancer; melanoma; targeted therapy; tolerant and persister cells
    DOI:  https://doi.org/10.3390/cells9122601
  12. Oncogene. 2020 Dec 09.
    Kong D, Zhou H, Neelakantan D, Hughes CJ, Hsu JY, Srinivasan RR, Lewis MT, Ford HL.
      It is well established that a subset of cells within primary breast cancers can undergo an epithelial-to-mesenchymal transition (EMT), although the role of EMT in metastasis remains controversial. We previously demonstrated that breast cancer cells that had undergone an oncogenic EMT could increase metastasis of neighboring cancer cells via non-canonical paracrine-mediated activation of GLI activity that is dependent on SIX1 expression in the EMT cancer cells. However, the mechanism by which these SIX1-expressing EMT cells activate GLI signaling remained unclear. In this study, we demonstrate a novel mechanism for activation of GLI-mediated signaling in epithelial breast tumor cells via EMT cell-induced production and secretion of VEGF-C. We show that VEGF-C, secreted by breast cancer cells that have undergone an EMT, promotes paracrine-mediated increases in proliferation, migration, and invasion of epithelial breast cancer cells, via non-canonical activation of GLI-signaling. We further show that the aggressive phenotypes, including metastasis, imparted by EMT cells on adjacent epithelial cancer cells can be disrupted by either inhibiting VEGF-C in EMT cells or by knocking down NRP2, a receptor which interacts with VEGF-C, in neighboring epithelial cancer cells. Interrogation of TCGA and GEO public datasets supports the relevance of this pathway in human breast cancer, demonstrating that VEGF-C strongly correlates with activation of Hedgehog signaling and EMT in the human disease. Our study suggests that the VEGF-C/NRP2/GLI axis is a novel and conserved paracrine means by which EMT cells enhance metastasis, and provides potential targets for therapeutic intervention in this heterogeneous disease.
    DOI:  https://doi.org/10.1038/s41388-020-01539-x
  13. Cell Rep Med. 2020 Nov 17. 1(8): 100143
    Masoud R, Reyes-Castellanos G, Lac S, Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A, Diémé B, Tranchida F, Cormareche L, Borge L, Gayet O, Pasquier E, Dusetti N, Iovanna J, Carrier A.
      Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.
    Keywords:  OXPHOS; cancer metabolism; energetic metabolism; metabolic heterogeneity; mitochondria; mitochondrial Complex I; pancreatic cancer; personalized medicine; phenformin; therapeutic strategy
    DOI:  https://doi.org/10.1016/j.xcrm.2020.100143
  14. Cancer Immunol Res. 2020 Dec 10. pii: canimm.0358.2020. [Epub ahead of print]
    Khojandi N, Kuehm LM, Piening A, Donlin MJ, Hsueh EC, Schwartz TL, Farrell K, Richart JM, Geerling E, Pinto AK, George SL, Albert CJ, Ford DA, Chen X, Kline J, Teague RM.
      Anti-tumor immunity is impaired in obese mice. Mechanistic insight into this observation remains sparse and whether it is recapitulated in patients with cancer is unclear because clinical studies have produced conflicting and controversial findings. We addressed this by analyzing data from patients with a diverse array of cancer types. We found that survival after immunotherapy was not accurately predicted by body mass index or serum leptin concentrations. However, oxidized low-density lipoprotein (ox-LDL) in serum was identified as a suppressor of T-cell function and a driver of tumor cytoprotection mediated by heme oxygenase-1 (HO-1). Analysis of a human melanoma gene expression database showed a clear association between higher HMOX1 (HO-1) expression and reduced progression-free survival. Our in vivo experiments using mouse models of both melanoma and breast cancer revealed HO-1 as a mechanism of resistance to anti-PD-1 immunotherapy but also exposed HO-1 as a vulnerability that could be exploited therapeutically using a small-molecule inhibitor. In conclusion, our clinical data have implicated serum ox-LDL as a mediator of therapeutic resistance in cancer patients, operating as a double-edged sword that both suppressed T-cell immunity and simultaneously induced HO-1-mediated tumor cell protection. Our studies also highlight the therapeutic potential of targeting HO-1 during immunotherapy, encouraging further translational development of this combination approach.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-20-0358
  15. J Exp Med. 2021 Mar 01. pii: e20201097. [Epub ahead of print]218(3):
    Ablain J, Liu S, Moriceau G, Lo RS, Zon LI.
      Functional evaluation of genetic lesions can discover a role in cancer initiation and progression and help develop novel therapeutic strategies. We previously identified the negative MAPK regulator SPRED1 as a novel tumor suppressor in KIT-driven melanoma. Here, we show that SPRED1 is also frequently deleted in human melanoma driven by mutant BRAF. We found that SPRED1 inactivation in human melanoma cell lines and primary zebrafish melanoma conferred resistance to BRAFV600E inhibition in vitro and in vivo. Mechanistically, SPRED1 loss promoted melanoma cell proliferation under mutant BRAF inhibition by reactivating MAPK activity. Consistently, biallelic deletion of SPRED1 was observed in a patient whose melanoma acquired resistance to MAPK-targeted therapy. These studies combining work in human cells and in vivo modeling in zebrafish demonstrate a new mechanism of resistance to BRAFV600E inhibition in melanoma.
    DOI:  https://doi.org/10.1084/jem.20201097
  16. Cell Rep. 2020 Dec 08. pii: S2211-1247(20)31462-5. [Epub ahead of print]33(10): 108473
    Fan H, Atiya HI, Wang Y, Pisanic TR, Wang TH, Shih IM, Foy KK, Frisbie L, Buckanovich RJ, Chomiak AA, Tiedemann RL, Rothbart SB, Chandler C, Shen H, Coffman LG.
      A role for cancer cell epithelial-to-mesenchymal transition (EMT) in cancer is well established. Here, we show that, in addition to cancer cell EMT, ovarian cancer cell metastasis relies on an epigenomic mesenchymal-to-epithelial transition (MET) in host mesenchymal stem cells (MSCs). These reprogrammed MSCs, termed carcinoma-associated MSCs (CA-MSCs), acquire pro-tumorigenic functions and directly bind cancer cells to serve as a metastatic driver/chaperone. Cancer cells induce this epigenomic MET characterized by enhancer-enriched DNA hypermethylation, altered chromatin accessibility, and differential histone modifications. This phenomenon appears clinically relevant, as CA-MSC MET is highly correlated with patient survival. Mechanistically, mirroring MET observed in development, MET in CA-MSCs is mediated by WT1 and EZH2. Importantly, EZH2 inhibitors, which are clinically available, significantly inhibited CA-MSC-mediated metastasis in mouse models of ovarian cancer.
    Keywords:  EZH2; WT1; carcinoma-associated mesenchymal stem cells; epigenomic reprogramming; mesenchymal-to-epithelial transition; metastasis; ovarian cancer; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.celrep.2020.108473
  17. Neoplasia. 2020 Dec 06. pii: S1476-5586(20)30177-9. [Epub ahead of print]23(1): 102-111
    Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang Y, Hotchkin M, Lee E, Buttitta L, Taichman RS.
      Prostate cancer (PCa) commonly metastasizes to the bone where the cells frequently undergo dormancy. The escape of disseminated tumor cells from cellular dormancy is a major cause of recurrence in marrow. Abscisic acid (ABA), a phytohormone, is known to regulate dormancy of plant seeds and to regulate other stress responses in plants. Recently, ABA was found to be synthesized by mammals cells and has been linked to human disease. Yet the role of ABA in regulating tumor dormancy or reactivation is unknown. We found that ABA is produced by human marrow cells, and exogenous ABA inhibits PCa cell proliferation while increasing the expression of p27, p21, and p16 and decreasing the expression of the proliferation marker, Ki67. Further, ABA significantly increased the percentage of PCa cells in the G0 phase of the cell cycle as well as the duration the cells were arrested in G0. We found that ABA regulates an increase of PPARγ receptor expression and suppressed phosphorylation of mTOR/p70S6K signaling and resulting in the induction of the cellular dormancy. We then confirmed that ABA regulates G0 cell cycle arrest through PPARγ receptor signaling in vitro and under co-culture conditions with osteoblasts. Finally, we demonstrate that ABA regulates PCa dormancy in vivo following intratibial injection in an animal model. Together these data suggest that the ABA and PPARγ signaling pathways contribute to the establishment of PCa cellular dormancy in the bone marrow microenvironment. These findings may suggest critical pathways for targeting metastatic disease.
    Keywords:  Abscisic acid; Bone marrow microenvironment; Disseminated tumor cells; Dormancy; PPARγ; Prostate cancer
    DOI:  https://doi.org/10.1016/j.neo.2020.11.009
  18. Cancer Discov. 2020 Dec 10.
      Preclinical findings from Stanford University may help explain the lack of efficacy with CAR T-cell therapies in some patients with large B-cell lymphomas. The researchers pinpointed the CD58-CD2 axis as a novel resistance mechanism, then figured out how next-generation CAR T cells could be engineered to overcome this issue.
    DOI:  https://doi.org/10.1158/2159-8290.CD-NB2020-111
  19. Cancer Lett. 2020 Dec 02. pii: S0304-3835(20)30643-1. [Epub ahead of print]
    McAleese CE, Choudhury C, Butcher NJ, Minchin RF.
      Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
    Keywords:  Autophagy; Chemoresistance; Drug efflux; Drug targets; HIF-1α induction; Stemness
    DOI:  https://doi.org/10.1016/j.canlet.2020.11.045
  20. Proc Natl Acad Sci U S A. 2020 Dec 07. pii: 202006828. [Epub ahead of print]
    Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, Kim J, Kim J, Seo J, Min JK, Oh KJ, Han BS, Kim WK, Bae KH, Song J, Kim J, Huh YM, Hwang GS, Lee EW, Lee SC.
      Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood. In this study, we found that the expression of elongation of very long-chain fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1 (FADS1) is up-regulated in mesenchymal-type gastric cancer cells (GCs), leading to ferroptosis sensitization. In contrast, these enzymes are silenced by DNA methylation in intestinal-type GCs, rendering cells resistant to ferroptosis. Lipid profiling and isotope tracing analyses revealed that intestinal-type GCs are unable to generate arachidonic acid (AA) and adrenic acid (AdA) from linoleic acid. AA supplementation of intestinal-type GCs restores their sensitivity to ferroptosis. Based on these data, the polyunsaturated fatty acid (PUFA) biosynthesis pathway plays an essential role in ferroptosis; thus, this pathway potentially represents a marker for predicting the efficacy of ferroptosis-mediated cancer therapy.
    Keywords:  ELOVL5; FADS1; arachidonic acid; ferroptosis; lipid peroxidation
    DOI:  https://doi.org/10.1073/pnas.2006828117
  21. EMBO Mol Med. 2020 Dec 09. e13122
    Ko J, Winslow MM, Sage J.
      Metastasis is a major cause of morbidity and mortality in cancer patients. However, the molecular and cellular mechanisms underlying the ability of cancer cells to metastasize remain relatively poorly understood. Among all solid tumors, small cell lung cancer (SCLC) has remarkable metastatic proclivity, with a majority of patients diagnosed with metastatic disease. Our understanding of SCLC metastasis has been hampered for many years by the paucity of material from primary tumors and metastases, as well as the lack of faithful pre-clinical models. Here, we review recent advances that are helping circumvent these limitations. These advances include methods that employ circulating tumor cells from the blood of SCLC patients and the development of diverse genetically engineered mouse models of metastatic SCLC. New insights into the cellular mechanisms of SCLC metastasis include observations of cell fate changes associated with increased metastatic ability. Ongoing studies on cell migration and organ tropism promise to expand our understanding of SCLC metastasis. Ultimately, a better molecular understanding of metastatic phenotypes may be translated into new therapeutic options to limit metastatic spread and treat metastatic SCLC.
    Keywords:  NFIB; SCLC; lung cancer; metastasis; tumor heterogeneity
    DOI:  https://doi.org/10.15252/emmm.202013122
  22. Sci Rep. 2020 Dec 09. 10(1): 21592
    Tamai K, Nakamura-Shima M, Shibuya-Takahashi R, Kanno SI, Yasui A, Mochizuki M, Iwai W, Wakui Y, Abue M, Yamamoto K, Miura K, Mizuma M, Unno M, Kawamura S, Sato I, Yasuda J, Yamaguchi K, Sugamura K, Satoh K.
      Cancer stem cells (CSCs) define a subpopulation of cancer cells that are resistant to therapy. However, little is known of how CSC characteristics are regulated. We previously showed that dormant cancer stem cells are enriched with a CD274low fraction of cholangiocarcinoma cells. Here we found that BEX2 was highly expressed in CD274low cells, and that BEX2 knockdown decreased the tumorigenicity and G0 phase of cholangiocarcinoma cells. BEX2 was found to be expressed predominantly in G0 phase and starvation induced the USF2 transcriptional factor, which induced BEX2 transcription. Comprehensive screening of BEX2 binding proteins identified E3 ubiquitin ligase complex proteins, FEM1B and CUL2, and a mitochondrial protein TUFM, and further demonstrated that knockdown of BEX2 or TUFM increased mitochondria-related oxygen consumption and decreased tumorigenicity in cholangiocarcinoma cells. These results suggest that BEX2 is essential for maintaining dormant cancer stem cells through the suppression of mitochondrial activity in cholangiocarcinoma.
    DOI:  https://doi.org/10.1038/s41598-020-78539-0