bims-tremyl Biomed News
on Therapy resistance biology in myeloid leukemia
Issue of 2021‒04‒11
27 papers selected by
Paolo Gallipoli
Barts Cancer Institute, Queen Mary University of London


  1. Blood. 2021 Apr 06. pii: blood.2020010167. [Epub ahead of print]
      Selective targeting of BCL2 with the BH3-mimetic venetoclax is proving transformative for patients with various leukemias. TP53 controls apoptosis upstream from where BCL2 and its pro-survival relatives, such as MCL1, act. Therefore, targeting these pro-survival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL2 has produced clinically relevant responses in blood cancers with aberrant TP53. However, we show that TP53 mutated or deficient myeloid and lymphoid leukemias outcompete isogenic controls with intact TP53, unless sufficient concentrations of BH3-mimetics targeting BCL2 or MCL1 are applied. Strikingly, tumor cells with TP53 dysfunction escape and thrive over time if inhibition of BCL2 or MCL1 is sub-lethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study reveals the key role of TP53 in shaping long-term responses to BH3-mimetic drugs and reconciles the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia (CLL) or acute myeloid leukemia (AML). In contrast to BH3-mimetics targeting just BCL2 or MCL1 at doses which are individually sub-lethal, we find that a combined BH3-mimetic approach targeting both pro-survival proteins enhances lethality and durably suppresses leukemic burden, regardless of TP53 mutation status. Our findings highlight the importance of employing sufficiently lethal treatment strategies to maximize outcomes for patients with TP53-mutant disease. In addition, our findings caution against use of sub-lethal BH3-mimetic drug regimens, which may enhance the risk of disease progression driven by emergent TP53 mutant clones.
    DOI:  https://doi.org/10.1182/blood.2020010167
  2. Cold Spring Harb Mol Case Stud. 2021 Apr;pii: a006007. [Epub ahead of print]7(2):
      Somatic mutations in hotspot regions of the cytosolic or mitochondrial isoforms of the isocitrate dehydrogenase gene (IDH1 and IDH2, respectively) contribute to the pathogenesis of acute myeloid leukemia (AML) by producing the oncometabolite 2-hydroxyglutarate (2-HG). The allosteric IDH1 inhibitor, ivosidenib, suppresses 2-HG production and induces clinical responses in relapsed/refractory IDH1-mutant AML. Herein, we describe a clinical case of AML in which we detected the neomorphic IDH1 p.R132C mutation in consecutive patient samples with a mutational hotspot targeted next-generation sequencing (NGS) assay. The patient had a clinical response to ivosidenib, followed by relapse and disease progression. Subsequent sequencing of the relapsed sample using a newly developed all-exon, hybrid-capture-based NGS panel identified an additional IDH1 p.S280F mutation known to cause renewed 2-HG production and drug resistance. Structural modeling confirmed that serine-to-phenylalanine substitution at this codon sterically hinders ivosidenib from binding to the mutant IDH1 dimer interface and predicted a similar effect on the pan-IDH inhibitor AG-881. Joint full-exon NGS and structural modeling enables monitoring IDH1 inhibitor-treated AML patients for acquired drug resistance and choosing follow-up therapy.
    Keywords:  leukemia
    DOI:  https://doi.org/10.1101/mcs.a006007
  3. Cancer. 2021 Apr 05.
      BACKGROUND: Several important treatment and supportive care strategies have been implemented over the past 4 decades in the management of acute myeloid leukemia (AML).METHODS: The authors identified 29,107 patients who were diagnosed with de novo AML between 1980 and 2017 in the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Patients were categorized into 5 age groups (ages birth to 14, 15-39, 40-59, 60-69, and ≥70 years) and 4 calendar periods (1980-1989, 1990-1999, 2000-2009, and 2010-2017). The outcomes of patients who had AML within these categories were analyzed.
    RESULTS: The overall 5-year survival rates in patients with AML were 9%, 15%, 22%, and 28% in the decades 1980 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017, respectively. Among patients aged 15 to 39 years, the 5-year survival rates were 24%, 41%, 52%, and 63%, respectively; among those aged ≥70 years, the 5-year survival rates were 1%, 2%, 3%, and 5%, respectively. Four-week mortality was surprising high among adults and older patients (range, 20%-45%), even in modern times. Overall, survival continued to improve over the calendar periods and was best in the period from 2010 to 2017. Survival improvement was noticeable across all age groups except patients aged ≥70 years, in whom the estimated 5-year survival rate remained 5% even during the period from 2010 to 2017.
    CONCLUSIONS: The outcomes of patients with AML showed incremental improvement over time in a population-based study of the Surveillance, Epidemiology, and End Results data. The introduction since 2017 of targeted therapies among older patients and optimizations in supportive care hopefully will continue to improve outcomes in AML, particularly among older patients.
    Keywords:  Epidemiology; Surveillance, Epidemiology, and End Results; acute myeloid leukemia; and End Results; decades; early mortality; outcome
    DOI:  https://doi.org/10.1002/cncr.33458
  4. Biochem Pharmacol. 2021 Apr 05. pii: S0006-2952(21)00140-4. [Epub ahead of print] 114544
      Although YM155 is reported to suppress survivin (also known as BIRC5) expression in cancer cells, its cytotoxic mechanism in human acute myeloid leukemia (AML) cells has not been clearly resolved . In this study, we analyzed the mechanistic pathways that modulate the sensitivity of human AML U937 and HL-60 cells to YM155. YM155 induced apoptosis in AML cells, which was characterized by p38 MAPK phosphorylation and downregulation of survivin and MCL1 expression. Phosphorylated p38 MAPK causes autophagy-mediated Sp1 degradation, thereby inhibiting the transcription of survivin and MCL1. The reduction of survivin and MCL1 levels further facilitated Sp1 protein degradation through autophagy. The restoration of Sp1, survivin, or MCL1 expression protected U937 and HL-60 cells from YM155-mediated cytotoxicity. U937 and HL-60 cells were continuously exposed to hydroquinone (HQ) to generate U937/HQ and HL-60/HQ cells, which showed increased SLC35F2 expression. The increase in SLC35F2 expression led to an increase in the sensitivity of U937/HQ cells to YM155-mediated cytotoxicity, whereas no shuch effect was observed in HL-60/HQ cells. Of note, myeloperoxidase (MPO) activity in HL-60 and HL-60/HQ cells enhanced YM155 cytotoxicity in these cells, and the enforced expression of MPO also increased the sensitivity of U937 cells to YM155. Taken together, we conclude that p38 MAPK-modulated autophagy inhibits Sp1-mediated survivin and MCL1 expression, which, in turn, leads to the death of U937 and HL-60 cells following YM155 treatment. In addition, our data indicate that SLC35F2 increases the sensitivity of U937 cells to YM155-mediated cytotoxicity, whereas MPO enhances YM155 cytotoxicity in U937 and HL-60 cells.
    Keywords:  MCL1/Survivin; Myeloperoxidase; SLC35F2; Sp1; YM155
    DOI:  https://doi.org/10.1016/j.bcp.2021.114544
  5. Pharmacol Ther. 2021 Mar 31. pii: S0163-7258(21)00046-2. [Epub ahead of print] 107844
      Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion and differentiation arrest of the myeloid progenitor cells which leads to accumulation of immature cells called blasts in the bone marrow and/or peripheral blood. Mutations in the receptor tyrosine kinase FLT3, occurs in 30% of normal karyotype patients with AML and are associated with higher incidence of relapse and worse survival. Targeted therapies against FLT3 mutations using small-molecule FLT3 tyrosine kinase inhibitors (TKIs) have long been investigated, with some showing favorable clinical outcomes. However, major setbacks such as limited clinical efficacy and the high risk of acquired resistance remain unresolved. FLT3 signaling, mutations and FLT3 inhibitors are topics that have been extensively reviewed in recent years. Strategies to target FLT3 beyond the small molecule kinase inhibitors are expanding, nevertheless are not receiving enough attention. These modalities include antibody-based FLT3 targeted therapies, immune cells mediated targeting strategies, and approaches targeting downstream signaling pathways and FLT3 translation. Here, we review the most recent advances and the challenges associated with the development of therapeutic modalities targeting FLT3 beyond the kinase inhibitors.
    Keywords:  AML; CAR-T; FLT3; FLT3-ITD; Monoclonal antibody; microRNAs; scFv
    DOI:  https://doi.org/10.1016/j.pharmthera.2021.107844
  6. Exp Hematol Oncol. 2021 Apr 09. 10(1): 27
      BACKGROUND: The receptor tyrosine kinase FLT3 with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) is a poor prognostic factor; however, the prognostic significance of missense mutation in the tyrosine kinase domain (FLT3-TKD) is controversial. Furthermore, the accompanying mutations and fusion genes with FLT3 mutations are unclear in acute myeloid leukemia (AML).METHODS: We investigated FLT3 mutations and their correlation with other gene mutations and gene fusions through two RNA-seq based next-generation sequencing (NGS) method and prognostic impact in 207 de novo AML patients.
    RESULTS: FLT3-ITD mutations were positive in 58 patients (28%), and FLT3-TKD mutations were positive in 20 patients (9.7%). FLT3-ITD was associated with a higher white blood cell count (WBC, mean 72.9 × 109/L vs. 24.2 × 109/L, P = 0.000), higher bone marrow blasts (mean 65.9% vs. 56.0%, P = 0.024), and NK-AML (normal karyotype) (64.8% vs. 48.4%, P = 0.043). NPM1 and DNMT3A mutations were enriched in FLT3-ITD (53.5% vs. 15.3%, P = 0.000; 34.6% vs. 13%, P = 0.003). However, the mutations of CEBPA were excluded in FLT3-AML (3.8% vs. 0% vs. 19.8%, P = 0.005). Mutations of Ras and TP53 were unlikely associated with FLT3-ITD (1.9% vs. 20.6%, P = 0.006; 0% vs. 6.1%, P = 0.04). The common fusion genes (> 10%) in FLT3-ITD had MLL-rearrangement and NUP98-rearrangement, while the common fusion genes in FLT3-TKD had AML1-ETO and MLL-rearrangement. Two novel fusion genes PRDM16-SKI and EFAN2-ZNF238 were identified in FLT3-ITD patients. Gene fusions and NPM1 mutation were mutually excluded in FLT3-ITD and FLT3-TKD patients. Their patterns of mutual exclusivity and cooperation among mutated genes suggest that additional driver genetic alterations are required and reveal two evolutionary patterns of FLT3 pathogenesis. Patients with FLT3-ITD had a lower CR (complete remission) rate, lower 3-year OS (overall survival), DFS (disease-free survival), and EFS (event-free survival) compared to FLT3wtAML. NK-AML with FLT3-ITD had a lower 3-year OS, DFS, and EFS than those without, while FLT3-TKD did not influence the survival in whole cohort and NK-AML. Besides, we found that FLT3-ITD/TET2 bimutation defined a poor prognostic subgroup.
    CONCLUSIONS: Our study offers deep insights into the molecular pathogenesis and biology of AML with FLT3-ITD and FLT3-TKD by providing the profiles of concurrent molecular alterations and the clinical impact of FLT3-ITD and FLT3-TKD on AML patients.
    Keywords:  Acute myeloid leukemia; FLT3-ITD; FLT3-TKD; Next-generation sequencing; TET2
    DOI:  https://doi.org/10.1186/s40164-021-00207-4
  7. Blood. 2021 Apr 08. pii: blood.2020009244. [Epub ahead of print]
      Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (CEBPA DM), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE is a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of one allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission together with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DM. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.
    DOI:  https://doi.org/10.1182/blood.2020009244
  8. Leuk Lymphoma. 2021 Apr 08. 1-9
      Liposomal daunorubicin/cytarabine (CPX-351) gained FDA approval for secondary AML after demonstrating improved outcomes over daunorubicin and cytarabine (7 + 3). A number of study limitations prompted a comparison of safety/efficacy of CPX-351 against regimens containing a purine analogue and high-dose cytarabine (HIDAC). This retrospective study compared complete response rates with/without count recovery (CR/CRi) between HIDAC-based regimens and CPX-351 in 169 patients with newly diagnosed sAML. The CR/CRi rate was 62.7% in the HIDAC-based therapy arm vs. 47.9% in the CPX-351 arm (p = 0.002 [one-sided for non-inferiority]). Median time to absolute neutrophil and platelet count recovery was shorter after HIDAC-based therapy (18 and 23 days, respectively) compared to CPX-351 (36 and 38 days; p < 0.001). Median overall survival was 9.8 months in the HIDAC-based group and 9.14 months in the CPX-351 group. 30-day mortality was greater with CPX-351 (8.5%) compared to HIDAC-based (1.3%; p = 0.039). These results reveal comparable efficacy and favorable safety with HIDAC-based regimens.
    Keywords:  CPX-351; FLAG; Vyxeos; cytarabine; oncology stewardship; secondary AML
    DOI:  https://doi.org/10.1080/10428194.2021.1907378
  9. Transplant Cell Ther. 2021 Apr;pii: S2666-6367(21)00005-1. [Epub ahead of print]27(4): 311.e1-311.e10
      Acute myeloid leukemia (AML) with intermediate risk cytogenetics (IRcyto) comprises a variety of biological entities with distinct mutational landscapes that translate into differential risks of relapse and prognosis. Optimal postremission therapy choice in this heterogeneous patient population is currently unsettled. In the current study, we compared outcomes in IRcyto AML recipients of autologous (autoSCT) (n = 312) or allogeneic stem cell transplantation (alloSCT) (n = 279) in first complete remission (CR1). Molecular risk was defined based on CEBPA, NPM1, and FLT3-ITD mutational status, per European LeukemiaNet 2017 criteria. Five-year overall survival (OS) in patients with favorable molecular risk (FRmol) was 62% (95% confidence interval [CI], 50-72) after autoSCT and 66% (95% CI, 41-83) after matched sibling donor (MSD) alloSCT (P = .68). For patients of intermediate molecular risk (IRmol), MSD alloSCT was associated with lower cumulative incidence of relapse (P < .001), as well as with increased nonrelapse mortality (P = .01), as compared to autoSCT. The 5-year OS was 47% (95% CI, 34-58) after autoSCT and 70% (95% CI, 59-79) after MSD alloSCT (P = .02) in this patient subgroup. In a propensity-score matched IRmol subcohort (n = 106), MSD alloSCT was associated with superior leukemia-free survival (hazard ratio [HR] 0.33, P = .004) and increased OS in patients alive 1 year after transplantation (HR 0.20, P = .004). These results indicate that, within IRcyto AML in CR1, autoSCT may be a valid option for FRmol patients, whereas MSD alloSCT should be the preferred postremission strategy in IRmol patients.
    Keywords:  Acute myeloid leukemia; Allogeneic stem cell transplant; Autologous stem cell transplant
    DOI:  https://doi.org/10.1016/j.jtct.2020.12.029
  10. Clin Cancer Res. 2021 Apr 08. pii: clincanres.4543.2020. [Epub ahead of print]
      PURPOSE: The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR-T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML leukemia stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR-T in AML treatment. This study aimed to test the safety and efficacy of CAR-T cell therapy in R/R-AML.EXPERIMENTAL DESIGN: Four pediatric patients with R/R-AML were enrolled in the ongoing phase 1/2 anti-CLL1 CAR-T cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4S-CAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays.
    RESULTS: Three R/R-AML patients achieved complete remission and minimal residual disease negativity, while the other patient remained alive for five months. All these patients experienced low-grade and manageable adverse events.
    CONCLUSIONS: Based on our single-institution experience, autologous anti-CLL1 CAR-T cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-4543
  11. Biochem Pharmacol. 2021 Apr 05. pii: S0006-2952(21)00134-9. [Epub ahead of print] 114538
      Acute myeloid leukemia (AML) with FLT3 internal tandem duplication (FLT3-ITD) has a dismal prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-ITD AML; however, when used alone, their efficacy is insufficient. FLT3 inhibitors combined with chemotherapy may be a promising treatment for FLT3-ITD AML. Homoharringtonine (HHT) is a classical anti-leukaemia drug with high sensitivity to FLT3-ITD AML cells. Here, we showed that HHT synergizes with a selective next-generation FLT3 inhibitor, quizartinib, to inhibit cell growth/viability and induce cell-cycle arrest and apoptosis in FLT3-ITD AML cells in vitro, significantly inhibit acute myeloid leukemia progression in vivo, and substantially prolong survival of mice-bearing human FLT3-ITD AML. Mechanistically, HHT and quizartinib cooperatively inhibit FLT3-AKT and its downstream targets GSK3β, c-Myc, and cyclin D1, cooperatively up-regulate the pro-apoptosis proteins Bim and Bax, and down-regulate the anti-apoptosis protein Mcl1. Most strikingly, HHT and quizartinib cooperatively reduce the numbers of side-population (SP) and aldehyde dehydrogenase (ALDH)-positive cells, which reportedly are rich in LSCs. In conclusion, HHT combined with quizartinib may be a promising treatment strategy for patients with FLT3-ITD AML.
    Keywords:  Acute myeloidleukemia; FLT3 internal tandem duplication; Homoharringtonine; Quizartinib
    DOI:  https://doi.org/10.1016/j.bcp.2021.114538
  12. Nat Genet. 2021 Apr 08.
      Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
    DOI:  https://doi.org/10.1038/s41588-021-00829-8
  13. Blood. 2021 Apr 01. pii: blood.2020009933. [Epub ahead of print]
      The core-binding factors (CBFs), composed of CBFβ and RUNX subunits, play critical roles in most hematopoietic lineages, and are deregulated in Acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights on the molecular mechanisms involving CBFβ-SMMHC driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
    DOI:  https://doi.org/10.1182/blood.2020009933
  14. Leukemia. 2021 Apr 08.
      The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes.
    DOI:  https://doi.org/10.1038/s41375-021-01238-w
  15. Bone Marrow Transplant. 2021 Apr 06.
      Patients with poor risk acute myeloid leukemia (AML) have a dismal outcome. We hypothesized that combining decitabine with a standard non-myeloablative (NMA) conditioning regimen prior to allogeneic hematopoietic cell transplantation (allo HCT), might decrease the relapse incidence. We conducted a multicenter prospective phase II study (NCT02252107) with 10-day decitabine (20 mg/m2/day) integrated in a standard non-myeloablative conditioning regimen (3 days fludarabine 30 mg/m2 with 2 Gray total body irradiation (TBI)). Patients with AML ≥ 18 years in 1st (in)complete remission (CR/CRi) with a poor or very poor risk profile, as defined by the HOVON-132 protocol, were eligible. Results: Forty-six patients (median age 60; range 23-74) were included. Median follow up time was 44 months (range 31-65 months). The cumulative 1-year incidence of relapse and NRM were respectively 23% and 11%. Incidence of grade III-IV acute graft-vs-host-disease (GVHD) and severe chronic GVHD were 13% and 20%, respectively. One-year OS was 70%. Application of ELN 2017 risk classification to the study cohort revealed a cumulative one-year relapse rate of respectively 31% and 13% for the adverse and intermediate risk patients. To conclude, the 10-day DEC/FLU/TBI conditioning regimen prior to allo HCT in poor risk AML patients is effective and feasible.
    DOI:  https://doi.org/10.1038/s41409-021-01272-3
  16. Am J Hematol. 2021 Apr 03.
      Here we evaluated the clinical value of measurable residual disease (MRD) assessment within the genetic context in acute myeloid leukemia (AML) patients. The ability of MRD to identify patients at higher risk of relapse after an allogeneic hematopoietic stem cell transplantation (HSCT) was reduced in adverse risk compared to favorable or intermediate risk patients. Furthermore, MRD-negative patients in the adverse risk group experienced relapses much earlier compared to the other risk groups. The clinical value of MRD assessment seems to depend on the genetic context, which needs to be considered for treatment or surveillance aspects following HSCT. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/ajh.26179
  17. Blood Rev. 2021 Mar 24. pii: S0268-960X(21)00035-7. [Epub ahead of print] 100829
      Relapse in acute myeloid leukemia (AML) is common, especially in older patients, and there is currently no standard of care maintenance therapy for those who achieve complete remission. Finding effective, tolerable maintenance therapy to prolong remission has been a goal for decades, but early clinical trials testing a variety of agents demonstrated disappointing results with no overall survival benefit. CC-486, an oral hypomethylating agent, was recently approved in the United States for maintenance treatment in patients with AML in first remission following chemotherapy. A number of ongoing studies are assessing various therapeutics in the maintenance setting, including other hypomethylating agents, targeted small-molecule inhibitors, monoclonal antibodies, and immunomodulators. New strategies are needed to identify patients most likely to benefit from maintenance therapy, including those for whom a preemptive approach reliant on monitoring of measurable residual disease would be advantageous.
    Keywords:  Acute myeloid leukemia; Hematopoietic cell transplant; Intensive chemotherapy; Maintenance therapy; Remission
    DOI:  https://doi.org/10.1016/j.blre.2021.100829
  18. Oncogene. 2021 Apr 06.
      Chronic myeloid leukemia (CML) is an age-dependent blood malignancy. Like many other age-dependent human diseases, laboratory animal research of CML uses young mice that do not factor in the influence of aging. To understand how aging may impact animal modeling of human age-dependent diseases, we established the first aging mouse model of human CML in BALB/c mice in the advanced age defined by 75% survival. This model was developed by noncytotoxic depletion of bone marrow lineage-positive cells followed by BCR-ABL retroviral transduction and transplantation. CML developed in aging mice shared many similarities to that in young mice, but had increased incidence of anemia that is often seen in human CML. Importantly, we showed that aging of both donor hematopoietic stem cells and recipient bone marrow niche impacted BCR-ABL mediated leukemogenesis and leukemia spectrum. Optimal CML induction relied on age-matching for donors and recipients, and cross-transplantation between young and old mice produced a mixture of different leukemia. Therefore, our model provides initial evidence of the feasibility and merit of CML modeling in aging mice and offers a new tool for future studies of CML stem cell drug resistance and therapeutic intervention in which aging would be taken into consideration as an influencing factor.
    DOI:  https://doi.org/10.1038/s41388-021-01770-0
  19. Cancer Res. 2021 Feb 15. 81(4): 813-815
      The study by Greve and colleagues, in this issue of Cancer Research, provides new molecular insights into the intriguing clinical activity of DNA hypomethylating agents (HMA) in patients with acute myeloid leukemia (AML) with monosomal karyotypes. Patients with AML with adverse monosomal karyotypes are known to benefit from HMAs, but not cytarabine, a cytidine analog without HMA activity, but the specific molecular mechanisms remain poorly understood. The authors investigated the mechanistic effects of HMAs on gene reactivation in AML in the context of the most common monosomal karyotypes, genetic deletion of chromosome 7q and 5q. They identified genes with tumor-suppressive properties, an endogenous retrovirus cooperatively repressed by DNA hypermethylation, and increased genetic losses on hemizygous chromosomal regions versus normal biallelic regions in AML cell models. Treatment with HMAs preferentially induced expression of these hemizygous genes to levels similar to those of genes in a biallelic state. In addition to CpG hypomethylation, decitabine treatment resulted in histone acetylation and an open chromatin configuration specifically at hemizygous loci. By using primary blood blasts isolated from patients with AML receiving decitabine and AML patient-derived xenograft models established from patients with either monosomal karyotypes or normal cytogenetics, Greve and colleagues both validated their findings in primary patient samples and demonstrated superior antileukemic activity of decitabine compared with chemotherapy with cytarabine. These mechanistic insights into how epigenetic therapy beats adverse genetics in monosomy karyotype AML will open new therapeutic opportunities for a difficult-to-treat patient group.See related article by Greve et al., p. 834.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-4108
  20. Cold Spring Harb Mol Case Stud. 2021 Apr;pii: a005975. [Epub ahead of print]7(2):
      Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia but is approximately 500 times more likely to develop in children with Down syndrome (DS) through transformation of transient abnormal myelopoiesis (TAM). This study investigates the clinical significance of genomic heterogeneity of AMKL in children with and without DS and in children with TAM. Genomic evaluation of nine patients with DS-related TAM or AMKL, and six patients with non-DS AMKL, included conventional cytogenetics and a comprehensive next-generation sequencing panel for single-nucleotide variants/indels and copy-number variants in 118 genes and fusions involving 110 genes. Recurrent gene fusions were found in all patients with non-DS, including two individuals with complex genomes and either a NUP98-KDM5A or a KMT2A-MLLT6 fusion, and the remaining harbored a CBFA2T3-GLIS2 fusion, which arose from both typical and atypical cytogenetic mechanisms. These fusions guided treatment protocols and resulted in a change in diagnosis in two patients. The nine patients with DS had constitutional trisomy 21 and somatic GATA1 mutations, and those with DS-AMKL had two to four additional clinically significant somatic mutations. Comprehensive genomic characterization provides critical information for diagnosis, risk stratification, and treatment decisions for patients with AMKL. Continued genetic and clinical characterization of these rare cancers will aid in improving patient management.
    Keywords:  acute megakaryocytic leukemia
    DOI:  https://doi.org/10.1101/mcs.a005975
  21. BioDrugs. 2021 Apr 07.
      Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
    DOI:  https://doi.org/10.1007/s40259-021-00477-8
  22. Am J Hematol. 2021 Apr 09.
      Combinations of the BCL-2 inhibitor, venetoclax, with either hypomethylating agents (HMA), or low dose cytarabine (LDAC), have shown promising results in clinical trials of AML patients unfit for intensive therapy. We report on the efficacy and safety of AML patients that were treated with venetoclax combinations outside of clinical trials. Data on 133 patients with a mean age of 77 years is included. Complete remission (CR) + CR with incomplete count recovery (CRi) were achieved in 61% of patients. Relapse occurred in 25% of patients, with a median event free survival (EFS) of 11.7 months (95% CI, 10.09-13.35) among responding patients. At a median follow up of 8.7 months, the median overall survival (OS) was 9.8 months (95% CI 6.42-13.3) in the entire cohort. In multivariate analysis adverse karyotype was the only negative predictor of CR/CRi (p=0.03), while both ECOG performance status (PS) and adverse karyotype were significantly associated with shorter OS (p=0.023 and 0.038, respectively). Median OS was higher in patients achieving CR/CRi and in patients proceeding to allogeneic stem cell transplantation (allo-SCT). Treatment was well tolerated, with side effects similar to those described in the randomized clinical trials. Tumor lysis syndrome (TLS) occurred in 12% of patients. Our data support the efficacy and safety of venetoclax combinations in newly diagnosed AML patients not eligible for intensive therapy. According to our data, secondary AML patients could benefit from venetoclax combinations similarly to de-novo AML patients, and allo-SCT could be offered to selected patients achieving CR/CRi. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/ajh.26190
  23. Ann Hematol. 2021 Apr 06.
      Chronic neutrophilic leukemia (CNL) is a rare but serious myeloid malignancy. In a review of reported cases for WHO-defined CNL, CSF3R mutation is found in about 90% cases and confirmed as the molecular basis of CNL. Concurrent mutations are observed in CSF3R-mutated CNL patients, including ASXL1, SETBP1, SRSF2, JAK2, CALR, TET2, NRAS, U2AF1, and CBL. Both ASXL1 and SETBP1 mutations in CNL have been associated with a poor prognosis, whereas, SRSF2 mutation was undetermined. Our patient was a 77-year-old man and had no significant past medical history and symptoms with leukocytosis. Bone marrow (BM) aspirate and biopsy revealed a markedly hypercellular marrow with prominent left-shifted granulopoiesis. Next-generation sequencing (NGS) of DNA from the BM aspirate of a panel of 28 genes, known to be pathogenic in MDS/MPN, detected mutations in CSF3R, SETBP1, and SRSF2, and a diagnosis of CNL was made. The patient did not use a JAK-STAT pathway inhibitor (ruxolitinib) but started on hydroxyurea and alpha-interferon and developed pruritus after 4 months of diagnosis and nasal hemorrhage 1 month later. Then, the patient was diagnosed with CNL with AML transformation and developed intracranial hemorrhage and died. We repeated NGS and found that three additional mutations were detected: ASXL1, PRKDC, MYOM2; variant allele frequency (VAF) of the prior mutations in CSF3R, SETBP1, and SRSF2 increased. The concurrence of CSF3RT618I, ASXL1, SETBP1, and SRSF2 mutation may be a mutationally detrimental combination and contribute to disease progression and AML transformation, as well as the nonspecific treatment of hydroxyurea and alpha-interferon, but the significance and role of PRKDC and MYOM2 mutations were not undetermined.
    Keywords:  AML transformation; CSF3RT618I; Chronic neutrophilic leukemia
    DOI:  https://doi.org/10.1007/s00277-021-04491-2
  24. Cell Death Dis. 2021 Apr 06. 12(4): 371
      Although the mixed lineage leukemia 5 (MLL5) gene has prognostic implications in acute promyelocyte leukemia (APL), the underlying mechanism remains to be elucidated. Here, we demonstrate the critical role exerted by MLL5 in APL regarding cell proliferation and resistance to drug-induced apoptosis, through mtROS regulation. Additionally, MLL5 overexpression increased the responsiveness of APL leukemic cells to all-trans retinoic acid (ATRA)-induced differentiation, via regulation of the epigenetic modifiers SETD7 and LSD1. In silico analysis indicated that APL blasts with MLL5high transcript levels were associated with retinoic acid binding and downstream signaling, while MLL5low blasts displayed decreased expression of epigenetic modifiers (such as KMT2C, PHF8 and ARID4A). Finally, APL xenograft transplants demonstrated improved engraftment of MLL5-expressing cells and increased myeloid differentiation over time. Concordantly, evaluation of engrafted blasts revealed increased responsiveness of MLL5-expressing cells to ATRA-induced granulocytic differentiation. Together, we describe the epigenetic changes triggered by the interaction of MLL5 and ATRA resulting in enhanced granulocytic differentiation.
    DOI:  https://doi.org/10.1038/s41419-021-03604-z
  25. Ann Lab Med. 2021 Sep 01. 41(5): 479-484
      Myeloid-derived suppressor cells (MDSCs) represent phenotypically heterogeneous populations that suppress tumor-specific T-cell responses. MDSCs are produced from myeloid precursors in emergent states and are increased in several hematologic malignancies. We evaluated the differences in the levels and prognostic significance of MDSCs according to the clinical status of chronic myeloid leukemia (CML). The percentages and numbers of granulocytic (g)MDSCs and monocytic (m)MDSCs in peripheral blood (PB) and bone marrow (BM) aspirates were determined by five-color flow cytometry (HLA-DR/CD11b/CD15/CD33/CD14). The median BM-gMDSC% and PB-gMDSC% of the CML group were lower than those of the complete hematologic response (CHR) and control groups (P<0.001). In the CHR group, patients with major molecular response (MMR) showed higher median BM-gMDSC% than those without MMR (P=0.039). Conversely, the PB-mMDSC number of the CML group was higher than those of the CHR and control groups (P<0.001). Patients with high PB-gMDSC number exhibited superior survival to those with low PB-gMDSC number (P=0.021), and patients with high PB-mMDSC% showed inferior survival to those with low PB-mMDSC%, but there was no statistical significance (P=0.182). Increased gMDSCs at CHR may reflect non-leukemic granulopoiesis, and a high number of PB-gMDSCs suggests better prognosis in CML. However, mMDSCs may be associated with malignant conditions and poor prognosis.
    Keywords:  Chronic myeloid leukemia; Complete hematologic response; Granulocytic myeloid-derived suppressor cell; Major molecular response; Monocytic myeloid-derived suppressor cell; Prognosis
    DOI:  https://doi.org/10.3343/alm.2021.41.5.479