bims-traimu Biomed News
on Trained immunity
Issue of 2022‒06‒05
six papers selected by
Yantong Wan
Southern Medical University

  1. Front Biosci (Landmark Ed). 2022 May 13. 27(5): 157
      Coronavirus disease 2019 (COVID-19), which broke out at the end of 2019, is a global pandemic and seriously threatens human health. Vaccination is the most effective way to prevent and control COVID-19. At present, more than 13 COVID-19 vaccines have been urgently authorized for use, but the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has brought unprecedented challenges to the protective efficiency of these COVID-19 vaccines. In particular, the recent emergence of Delta and Omicron variants, which are rapidly spreading worldwide, may bring many challenges to the medical systems. Interestingly, previous studies have shown that the Bacillus Calmette-Guerin (BCG) vaccine used to prevent tuberculosis can induce non-specific trained immunity, protecting against infectious diseases caused by respiratory viruses. Therefore, there is a hypothesis that BCG plays an essential role in reducing the incidence, severity, hospitalization, and mortality of COVID-19 and enhancing the protection efficiency of the COVID-19 vaccine. To confirm this hypothesis, 56 clinical trials have been conducted globally to assess BCG's protective effectiveness against COVID-19 infection. Herein, this review discussed the trained immunity induced by BCG and its underlying mechanisms and summarised BCG's latest research progress in preventing COVID-19, especially the ongoing clinical trials. We hope this review will provide new strategies for fighting against COVID-19.
    Keywords:  Bacillus Calmette-Guerin (BCG); COVID-19; SARS-CoV-2; trained immunity; vaccines; variants
  2. mBio. 2022 Jun 01. e0068722
      Mycobacterium tuberculosis infects approximately one-third of the world's population, causing active tuberculosis (TB) in ~10 million people and death in ~1.5 million people annually. A potent vaccine is needed to boost the level of immunity conferred by the current Mycobacterium bovis BCG vaccine that provides moderate protection against childhood TB but variable protection against adult pulmonary TB. Previously, we developed a recombinant attenuated Listeria monocytogenes (rLm)-vectored M. tuberculosis vaccine expressing the M. tuberculosis 30-kDa major secretory protein (r30/Ag85B), recombinant attenuated L. monocytogenes ΔactA ΔinlB prfA*30 (rLm30), and showed that boosting BCG-primed mice and guinea pigs with rLm30 enhances immunoprotection against challenge with aerosolized M. tuberculosis Erdman strain. To broaden the antigen repertoire and robustness of rLm30, we constructed 16 recombinant attenuated L. monocytogenes vaccine candidates expressing 3, 4, or 5 among 15 selected M. tuberculosis antigens, verified their protein expression, genetic stability, and growth kinetics in macrophages, and evaluated them for capacity to boost protective efficacy in BCG-primed mice. We found that boosting BCG-primed C57BL/6 and BALB/c mice with recombinant attenuated L. monocytogenes multiantigenic M. tuberculosis vaccines, especially the rLm5Ag(30) vaccine expressing a fusion protein of 23.5/Mpt64, TB10.4/EsxH, ESAT6/EsxA, CFP10/EsxB, and r30, enhances BCG-induced protective immunity against M. tuberculosis aerosol challenge. In immunogenicity studies, rLm5Ag(30) strongly boosts M. tuberculosis antigen-specific CD4-positive (CD4+) and CD8+ T cell-mediated TH1-type immune responses in the spleens and lungs of BCG-primed C57BL/6 mice but does so only weakly in BCG-primed BALB/c mice. Hence, rLm5Ag(30) boosts BCG-primed immunoprotection against M. tuberculosis aerosol challenge in both C57BL/6 and BALB/c mice despite major differences in the magnitude of the vaccine-induced Th1 response in these mouse strains. Given the consistency with which recombinant attenuated L. monocytogenes vaccines expressing the 5 M. tuberculosis antigens in rLm5Ag(30) are able to boost the already high level of protection conferred by BCG alone in two rigorous mouse models of pulmonary TB and the broad CD4+ and CD8+ T cell immunity induced by rLm5Ag(30), this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world's population immunized with BCG in infancy. IMPORTANCE TB, one of the world's most important infectious diseases, afflicts approximately 10 million people and kills approximately 1.5 million people annually. The current vaccine, BCG, developed over a century ago, has been administered to about 5 billion people, mostly in infancy, but is only modestly protective. Hence, a vaccine is urgently needed to boost the level of protection afforded by BCG. Herein, we describe a safe potent live vaccine that utilizes as a vector an attenuated strain of Listeria monocytogenes, a bacterium that mimics the intracellular lifestyle of Mycobacterium tuberculosis, the causative agent of TB. The vaccine produces multiple immunologically protective proteins of M. tuberculosis. In two mouse models of pulmonary TB, the vaccine boosts the level of protection afforded by BCG. Thus, this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world's population immunized with BCG.
    Keywords:  Listeria monocytogenes; Listeria vector; Mycobacterium tuberculosis; live vector vaccines; tuberculosis; tuberculosis vaccines
  3. Cytokine. 2022 May 29. pii: S1043-4666(22)00128-4. [Epub ahead of print]156 155919
      Regulation of macrophage (Mɸ) function can maintain tissue homeostasis and control inflammation. Parasitic worms (helminths) are potent modulators of host immune and inflammatory responses. They have evolved various strategies to promote immunosuppression, including redirecting phagocytic cells toward a regulatory phenotype. Although soluble products from the whipworm Trichuris suis (TSPs) have shown significant effects on Mɸ function, the mechanisms underlying these modulatory effects are still not well understood. In this study, we find that TSPs suppressed inflammatory cytokines (TNF and IL-6) in Mɸs stimulated with a broad panel of TLR agonists, whilst inducing IL-10. Moreover, M1 markers such as MHCII, CD86, iNOS, and TNF were downregulated in TSP-treated Mɸs, without polarizing them towards an M2-like phenotype. We showed that TSPs could establish a suppressed activation state of Mɸs lasting at least for 72 h, indicating an anti-inflammatory innate training. Moreover, we found that TSPs, via repression of intracellular TNF generation, decreased its secretion rather than interfering with the release of surface-bound TNF. Metabolic analysis showed that TSPs promote oxidative phosphorylation (OXPHOS) without affecting glycolytic rate. Collectively, these findings expand our knowledge on helminth-induced immune modulation and support future investigations into the anti-inflammatory properties of TSPs for therapeutic purposes.
    Keywords:  Bone marrow-derived macrophages (BMDMs); Inflammation; Toll-like receptors (TLRs); Trichuris suis soluble products (TSPs)
  4. Front Immunol. 2022 ;13 877845
      Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
    Keywords:  genetic interference; heterologous immunity; innate immunity; live attenuated vaccine; non-specific effects of vaccination; pandemic; trained immunity
  5. J Clin Invest. 2022 Jun 01. pii: e139298. [Epub ahead of print]132(11):
      Plasmodium falciparum (P. falciparum) induces trained innate immune responses in vitro, where initial stimulation of adherent PBMCs with P. falciparum-infected RBCs (iRBCs) results in hyperresponsiveness to subsequent ligation of TLR2. This response correlates with the presence of T and B lymphocytes in adherent PBMCs, suggesting that innate immune training is partially due to adaptive immunity. We found that T cell-depleted PBMCs and purified monocytes alone did not elicit hyperproduction of IL-6 and TNF-α under training conditions. Analysis of P. falciparum-trained PBMCs showed that DCs did not develop under control conditions, and IL-6 and TNF-α were primarily produced by monocytes and DCs. Transwell experiments isolating purified monocytes from either PBMCs or purified CD4+ T cells, but allowing diffusion of secreted proteins, enabled monocytes trained with iRBCs to hyperproduce IL-6 and TNF-α after TLR restimulation. Purified monocytes stimulated with IFN-γ hyperproduced IL-6 and TNF-α, whereas blockade of IFN-γ in P. falciparum-trained PBMCs inhibited trained responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from patients with malaria showed persistently open chromatin at genes that appeared to be trained in vitro. Together, these findings indicate that the trained immune response of monocytes to P. falciparum is not completely cell intrinsic but depends on soluble signals from lymphocytes.
    Keywords:  Immunology; Infectious disease; Innate immunity; Malaria; T cells
  6. Microbiol Spectr. 2022 Jun 02. e0169321
      The objective of this study was to characterize the effect of Bacillus Calmette-Guérin (BCG) vaccination and M. tuberculosis infection on gut and lung microbiota of C57BL/6 mice, a well-characterized mouse model of tuberculosis. BCG vaccination and infection with M. tuberculosis altered the relative abundance of Firmicutes and Bacteroidetes phyla in the lung compared with control group. Vaccination and infection changed the alpha- and beta-diversity in both the gut and the lung. However, lung diversity was the most affected organ after BCG vaccination and M. tuberculosis infection. Focusing on the gut-lung axis, a multivariate regression approach was used to compare profile evolution of gut and lung microbiota. More genera have modified relative abundances associated with BCG vaccination status at gut level compared with lung. Conversely, genera with modified relative abundances associated with M. tuberculosis infection were numerous at lung level. These results indicated that the host local response against infection impacted the whole microbial flora, while the immune response after vaccination modified mainly the gut microbiota. This study showed that a subcutaneous vaccination with a live attenuated microorganism induced both gut and lung dysbiosis that may play a key role in the immunopathogenesis of tuberculosis. IMPORTANCE The microbial communities in gut and lung are important players that may modulate the immunity against tuberculosis or other infections as well as impact the vaccine efficacy. We discovered that vaccination through the subcutaneous route affect the composition of gut and lung bacteria, and this might influence susceptibility and defense mechanisms against tuberculosis. Through these studies, we can identify microbial communities that can be manipulated to improve vaccine response and develop treatment adjuvants.
    Keywords:  BCG vaccine; gut microbiota; gut–lung axis; lung microbiota; tuberculosis