bims-supasi Biomed News
on Sulfation pathways and signalling
Issue of 2024‒04‒14
sixteen papers selected by
Jonathan Wolf Mueller, University of Birmingham



  1. Biomacromolecules. 2024 Apr 07.
      Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.
    DOI:  https://doi.org/10.1021/acs.biomac.4c00168
  2. Chem Biodivers. 2024 Apr 10. e202400152
      Thromboembolism is the culprit of cardiovascular diseases, leading to the highest global mortality rate. Anticoagulation emerges as the primary approach for managing thrombotic conditions. Notably, sulfated polysaccharides exhibit favorable anticoagulant efficacy with reduced side effects. This review focuses on the structure-anticoagulant activity relationship of sulfated polysaccharides and the underlying action mechanisms. It is concluded that chlorosulfonicacid-pyridine method serves as the preferred technique to synthesize sulfated polysaccharides. The anticoagulant activity of sulfated polysaccharides is linked to the substitution site of sulfate groups, degree of substitution, molecular weight, main side chain structure, and glycosidic bond conformation. Moreover, sulfated polysaccharides exert anticoagulant activity via various pathways, including the inhibition of blood coagulation factors, activation of antithrombin III and heparin cofactor II, antiplatelet aggregation, and promotion of the fibrinolytic system.
    Keywords:  Sulfated polysaccharides, Anticoagulant activity, Structure-activity relationship, Action mechanism
    DOI:  https://doi.org/10.1002/cbdv.202400152
  3. Inflammopharmacology. 2024 Apr 06.
      AIM: This study was aimed to assess the efficacy and safety of two oral Symptomatic Slow Acting Drugs for Osteoarthritis (SYSADOAs)-Glucosamine Sulfate, Chondroitin Sulfate, and their combination regimen in the management of knee osteoarthritis (KOA).METHODS: This systematic review was conducted according to PRISMA 2020 guidelines. A detailed literature search was performed from 03/1994 to 31/12/2022 using various electronic databases including PubMed, Embase, Cochrane Library, and Google Scholar, using the search terms-Glucosamine sulfate (GS), Chondroitin sulfate (CS), Knee osteoarthritis, Joint pain, Joint disease, and Joint structure, for literature concerning glucosamine, chondroitin, and their combination in knee osteoarthritis treatment. Cochrane Collaboration's Risk assessment tool (version 5.4.1) was used for assessing the risk of bias and the quality of the literature. The data was extracted from the included studies and subjected to statistical analysis to determine the beneficial effect of Glucosamine Sulfate, Chondroitin Sulfate, and their combination.
    RESULTS: Twenty-five randomized controlled trials (RCTs) were included in this systematic review. In short, exclusively 9 RCTs for GS, 13 RCTs for CS, and 3 RCTs for the combination of GS and CS. All these studies had their treatment groups compared with placebo. In the meta-analysis, CS showed a significant reduction in pain intensity, and improved physical function compared to the placebo; GS showed a significant reduction in tibiofemoral joint space narrowing. While the combination of GS and CS showed neither a reduction in pain intensity, nor any improvement in the physical function. However, the combination exhibited a non-significant reduction in joint space narrowing. In the safety evaluation, both CS and GS have shown good safety profile and were well tolerated.
    CONCLUSION: This meta-analysis revealed that the CS (with decreased pain intensity and improvement in the physical function), and GS (with significant reduction in the joint space narrowing) have significant therapeutic benefits. However, their combination did not significantly improve the symptoms or modify the disease. This may be due to the limited trials that are available on the combination of the sulfate forms of the intervention. Hence, there is a scope for conducting multicentric randomised controlled trials to evaluate and conclude the therapeutic role of CS and GS combination in the management of KOA.
    Keywords:  Chondroitin sulfate; Glucosamine sulfate; Joint structure; Knee osteoarthritis
    DOI:  https://doi.org/10.1007/s10787-024-01460-9
  4. Int J Mol Sci. 2024 Apr 02. pii: 3964. [Epub ahead of print]25(7):
      Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.
    Keywords:  Alzheimer’s disease; ApoE; amyloid-β; cerebral amyloid angiopathy; cerebrovasculature; endothelial cell; gender; heparan sulfate; smooth muscle cell
    DOI:  https://doi.org/10.3390/ijms25073964
  5. iScience. 2024 Apr 19. 27(4): 109528
      Diabetic neuropathy (DN) is a major complication of diabetes mellitus. Chondroitin sulfate (CS) is one of the most important extracellular matrix components and is known to interact with various diffusible factors; however, its role in DN pathology has not been examined. Therefore, we generated CSGalNAc-T1 knockout (T1KO) mice, in which CS levels were reduced. We demonstrated that diabetic T1KO mice were much more resistant to DN than diabetic wild-type (WT) mice. We also found that interactions between pericytes and vascular endothelial cells were more stable in T1KO mice. Among the RNA-seq results, we focused on the transforming growth factor β signaling pathway and found that the phosphorylation of Smad2/3 was less upregulated in T1KO mice than in WT mice under hyperglycemic conditions. Taken together, a reduction in CS level attenuates DN progression, indicating that CS is an important factor in DN pathogenesis.
    Keywords:  Immunology; Molecular biology; Neuroscience; Omics; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2024.109528
  6. FASEB J. 2024 Apr 15. 38(7): e23609
      PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.
    Keywords:  cancer‐associated point mutation; extracellular domain; heparan sulfate proteoglycan; protein tyrosine phosphatase receptor‐type D; tumor suppressor gene
    DOI:  https://doi.org/10.1096/fj.202302279RR
  7. Lab Invest. 2024 Apr 04. pii: S0023-6837(24)01735-5. [Epub ahead of print] 102057
      Ovarian carcinoma is usually diagnosed at an advanced stage with peritoneal dissemination and/or lymph node metastasis, and the prognosis for such advanced carcinoma is very poor. Therefore, new biomarkers to predict patient prognosis are needed. Miyamoto et al. previously showed that keratan sulfate (KS) detected by the 5D4 monoclonal antibody was expressed in ovarian carcinoma. However, the detailed structure of such KS was not determined, and the biological significance of this finding remained to be clarified. We previously generated the 297-11A monoclonal antibody, which recognizes galactose (Gal)-6-O-sulfated N-acetyllactosamine (LacNAc) located at the non-reducing terminus. Since the 297-11A epitope overlaps with that of 5D4, here we chose to use the 297-11A antibody as a tool to analyze KS and related structures. We conducted immunohistochemical analysis of 98 ovarian carcinoma cases with 297-11A antibody combined with a series of glycosidases and performed mass spectrometry analysis of the human serous ovarian carcinoma cell line OVCAR-3 to deduce the glycan structure of 297-11A-sulfated glycans. We also performed western blot analysis to assess a potential association of 297-11A-sulfated glycans with the mucin core protein mucin 16 (MUC16; also known as cancer antigen 125 (CA125)). Finally, we examined the relationship between 297-11A expression and patient prognosis. Consequently, 297-11A-sulfated glycans were primarily expressed in serous and endometrioid carcinomas and poorly expressed in mucinous and clear cell carcinomas. We reveal that structurally, 297-11A-sulfated glycans expressed in ovarian carcinoma are O-glycans carrying partially sialylated, Gal-6-O-sulfated LacNAc and that these glycans are likely displayed on MUC16 mucin core proteins. Of clinical importance is that expression of 297-11A-sulfated glycans correlated with shorter progression-free survival in patients. Thus, 297-11A-sulfated glycans may serve as a predictor of ovarian carcinoma recurrence.
    DOI:  https://doi.org/10.1016/j.labinv.2024.102057
  8. Plant Commun. 2024 Apr 09. pii: S2590-3462(24)00188-3. [Epub ahead of print] 100918
      Four distinctive types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated signaling pathway to suppress plant immunity. Over the past three decades, receptors of these four types of sulfated peptides have all been identified, all of which belong to the members of leucine-rich repeat receptor-like protein kinase (LRR-RLK) subfamily. A number of regulatory proteins were demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for the reference of future studies.
    Keywords:  peptide hormone; plant development; receptor-like protein kinase; stress adaptation; sulfated peptide
    DOI:  https://doi.org/10.1016/j.xplc.2024.100918
  9. Int J Biol Macromol. 2024 Apr 09. pii: S0141-8130(24)02311-0. [Epub ahead of print] 131506
      Marine green algae produce sulfated polysaccharides with diverse structures and a wide range of biological activities. This study aimed to enhance the biotechnological potential of sulfated heterorhamnan (Gb1) from Gayralia brasiliensis by chemically modifying it for improved or new biological functions. Using controlled Smith Degradation (GBS) and O-alkylation with 3-chloropropylamine, we synthesized partially water-soluble amine derivatives. GBS modification increase sulfate groups (29.3 to 37.5 %) and α-L-rhamnose units (69.9 to 81.2 mol%), reducing xylose and glucose, compared to Gb1. The backbone featured predominantly 3- and 2-linked α-L-rhamnosyl and 2,3- linked α-L-rhamnosyl units as branching points. Infrared and NMR analyses confirmed the substitution of hydroxyl groups with aminoalkyl groups. The modified compounds, GBS-AHCs and GBS-AHK, exhibited altered anticoagulant properties. GBS-AHCs showed reduced effectiveness in the APTT assay, while GBS-AHK maintained a similar anticoagulant activity level to Gb1 and GBS. Increased nitrogen content and N-alkylation in GBS-AHCs compared to GBS-AHK may explain their structural differences. The chemical modification proposed did not enhance its anticoagulant activity, possibly due to the introduction of amino groups and a positive charge to the polymer. This characteristic presents new opportunities for investigating the potential of these polysaccharides in various biological applications, such as antimicrobial and antitumoral activities.
    Keywords:  Anticoagulant activity; Chemical modifications; Controlled Smith degradation
    DOI:  https://doi.org/10.1016/j.ijbiomac.2024.131506
  10. Molecules. 2024 Apr 08. pii: 1667. [Epub ahead of print]29(7):
      The Beckmann rearrangement of ketoximes to their corresponding amides, using a Brønsted acid-mediated fragmentation and migration sequence, has found wide-spread industrial application. We postulated that the development of a methodology to access ylideneamino sulfates using tributylsulfoammonium betaine (TBSAB) would afford isolable Beckmann-type intermediates and competent partners for subsequent rearrangement cascades. The ylideneamino sulfates generated, isolated as their tributylammonium salts, are sufficiently activated to undergo Beckmann rearrangement without additional reagent activation. The generation of sulfuric acid in situ from the ylideneamino sulfate giving rise to a routine Beckmann rearrangement and additional amide bond cleavage to the corresponding aniline was detrimental to reaction success. The screening of bases revealed inexpensive sodium bicarbonate to be an effective additive to prevent classic Brønsted acid-mediated fragmentation and achieve optimal conversions of up to 99%.
    Keywords:  Beckmann; interrupted; oxime; rearrangement; sulfation; ylideneamino sulfate
    DOI:  https://doi.org/10.3390/molecules29071667
  11. Skin Res Technol. 2024 Apr;30(4): e13666
      BACKGROUND: It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum.OBJECTIVE: We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function.
    METHODS: We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR.
    RESULTS: An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content.
    CONCLUSION: These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.
    Keywords:  moisturizing; skin barrier function; sodium trehalose sulfate; sulfated oligosaccharides
    DOI:  https://doi.org/10.1111/srt.13666
  12. Atherosclerosis. 2024 Mar 19. pii: S0021-9150(24)00079-0. [Epub ahead of print]392 117519
      BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo.METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated.
    RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages.
    CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.
    Keywords:  Atherosclerosis; Extracellular matrix; Heparan sulfate; Heparanase; Inflammation
    DOI:  https://doi.org/10.1016/j.atherosclerosis.2024.117519
  13. Drug Test Anal. 2024 Apr 06.
      Α sensitive and selective derivatization and inject method for the quantification of intact nandrolone phase II oxo-metabolites was developed and validated using liquid chromatography - (tandem high resolution) mass spectrometry (LC-MS/(HRMS)). For the derivatization, Girard's reagent T (GRT) was used directly in natural urine samples and the analysis of the metabolites of interest was performed by direct injection into LC-MS/(HRMS) system operating in positive ionization mode. Derivatization enabled the efficient detection of nandrolone oxo-metabolites, while at the same time producing intense product ions under collision-induced dissociation (CID) conditions that are related to metabolites of the steroid backbone and not to the conjugated moieties. Glucuronide and sulfate metabolites of nandrolone were chromatographically resolved and quantified in the same run in the range of 1-100 ng mL-1, while at the same time structure identification could be performed for each metabolite. Full validation of the method was performed according to the World Anti-Doping Agency (WADA) International Standard for Laboratories (ISL). Nandrolone oxo-metabolites were quantified in two sets of urine samples, the first set consisted of real urine samples previously detected as negative and the second set consisted of urine samples collected from two excretion studies after nandrolone decanoate administration. The results for 19-norandrosterone glucuronide (19-NAG) and 19-noretiocholanolone glucuronide (19-NEG) were compared with those obtained by traditional gas chromatography - (tandem) mass spectrometry (GC-MS/[MS]) method.
    Keywords:  Girard's reagent T derivatization; LC–MS/(MS); doping control; nandrolone; phase II metabolism
    DOI:  https://doi.org/10.1002/dta.3689
  14. Acta Pharmacol Sin. 2024 Apr 08.
      Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
    Keywords:  IS-TNFα axis; MAP2; OAT3; acute kidney injury; synaptophysin; uremic encephalopathy
    DOI:  https://doi.org/10.1038/s41401-024-01251-6
  15. Molecules. 2024 Mar 23. pii: 1445. [Epub ahead of print]29(7):
      The C(sp2)-aryl sulfonate functional group is found in bioactive molecules, but their synthesis can involve extreme temperatures (>190 °C or flash vacuum pyrolysis) and strongly acidic reaction conditions. Inspired by the 1917 Tyrer industrial process for a sulfa dye that involved an aniline N(sp2)-SO3 intermediate en route to a C(sp2)-SO3 rearranged product, we investigated tributylsulfoammonium betaine (TBSAB) as a milder N-sulfamation to C-sulfonate relay reagent. Initial investigations of a stepwise route involving TBSAB on selected anilines at room temperature enabled the isolation of N(sp2)-sulfamate. Subsequent thermal rearrangement demonstrated the intermediary of a sulfamate en route to the sulfonate; however, it was low-yielding. Investigation of the N-sulfamate to C--sulfonate mechanism through control experiments with variation at the heteroatom positions and kinetic isotope experiments (KIEH/D) confirmed the formation of a key N(sp2)-SO3 intermediate and further confirmed an intermolecular mechanism. Furthermore, compounds without an accessible nitrogen (or oxygen) lone pair did not undergo sulfamation- (or sulfation) -to-sulfonation under these conditions. A one-pot sulfamation and thermal sulfonation reaction was ultimately developed and explored on a range of aniline and heterocyclic scaffolds with high conversions, including N(sp2)-sulfamates (O(sp2)-sulfates) and C(sp2)-sulfonates, in up to 99 and 80% (and 88% for a phenolic example) isolated yield, respectively. Encouragingly, the ability to modulate the ortho-para selectivity of the products obtained was observed under thermal control. A sulfonated analog of the intravenous anesthetic propofol was isolated (88% yield), demonstrating a proof-of-concept modification of a licensed drug alongside a range of nitrogen- and sulfur-containing heterocyclic fragments used in drug discovery.
    Keywords:  TBSAB; Tyrer; rearrangement; sulfamation; sulfation; sulfonation
    DOI:  https://doi.org/10.3390/molecules29071445
  16. Am J Transl Res. 2024 ;16(3): 873-888
      OBJECTIVES: In this comprehensive study spanning 33 malignancies, we explored the differential expression and prognostic significance of Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2).METHODS: TIMER2, UALCAN, and GEPIA2 were used for the expression analysis. cBioPortal was used for mutational analysis. CancerSEA, STRING, and DAVID, were employed for the single cell sequencing data analysis, protein-protein interaction network development, and gene enrichment analyses, respectively. GSCAlite and RT-qPCR were used for drug sensitivity and expression validation analysis.
    RESULTS: HS6ST2 exhibited significant (P < 0.05) overexpression in multiple cancers. Prognostically, elevated HS6ST2 expression was significantly associated with poor overall survival (OS) in patients with cervical squamous cell carcinoma (CESC), kidney chromophobe (KICH), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD), emphasizing its potential as a prognostic indicator in these cancers. Moreover, HS6ST2 expression correlated with pathological stages in CESC, KICH, LUAD, and STAD patients. Exploration of genetic alterations using cBioPortal unveiled distinct mutational landscapes, with low mutation frequencies in CESC, KICH, LUAD, and STAD. Additionally, reduced DNA methylation in CESC, KICH, LUAD, and STAD suggested a potential link between hypomethylation and heightened HS6ST2 expression. Analysis of immune cell infiltration revealed a positive correlation between HS6ST2 expression and the infiltration of CD8+ T and CD4+ T cells in CESC, KICH, LUAD, and STAD, highlighting its involvement in the tumor immunology processes. Single-cell functional states analysis demonstrated associations between HS6ST2 and diverse cellular processes. Moreover, gene enrichment analysis revealed the involvement HS6ST2 in crucial cellular activities. GSCAlite analysis underscored the potential of HS6ST2 as a therapeutic target, showing associations with drug sensitivity. Finally, experimental validation through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in LUAD tissues confirmed elevated HS6ST2 expression.
    CONCLUSION: Overall, this study provides a comprehensive understanding of HS6ST2 in CESC, KICH, LUAD, and STAD, emphasizing its potential as a prognostic biomarker and therapeutic target.
    Keywords:  Cancer; HS5ST2; prognosis; therapeutic target
    DOI:  https://doi.org/10.62347/NCPH5416