bims-supasi Biomed News
on Sulfation pathways and signalling
Issue of 2022‒07‒31
twenty-two papers selected by
Jonathan Wolf Mueller
University of Birmingham

  1. Comput Struct Biotechnol J. 2022 ;20 3884-3898
      Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
    Keywords:  3-O-Sulfation; 3OS, 3-O-sulfate; 3OSTs; Conformational changes; Conformational sampling; EED, End-to-End Distance; GAGs, Glycosaminoglycans; Heparan sulfate; Hp/HS, Heparin/Heparan Sulfate; MD, Molecular Dynamics; Molecular dynamics
  2. ACS Omega. 2022 Jul 19. 7(28): 24461-24467
      Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is ubiquitously distributed throughout the animal kingdom and represents a key regulator of biological processes and a largely untapped reservoir of potential therapeutic targets. The temporal and spatial variations in the HS structure underpin the concept of "heparanome" and a complex network of HS binding proteins. However, despite its widespread biological roles, the determination of direct structure-to-function correlations is impaired by HS chemical heterogeneity. Attempts to correlate substitution patterns (mostly at the level of sulfation) with a given biological activity have been made. Nonetheless, these do not generally consider higher-level conformational effects at the carbohydrate level. Here, the use of NMR chemical shift analysis, NOEs, and spin-spin coupling constants sheds new light on how different sulfation patterns affect the polysaccharide backbone geometry. Furthermore, the substitution of native O-glycosidic linkages to hydrolytically more stable S-glycosidic forms leads to observable conformational changes in model saccharides, suggesting that alternative chemical spaces can be accessed and explored using such mimetics. Employing a series of systematically modified heparin oligosaccharides (as a proxy for HS) and chemically synthesized O- and S-glycoside analogues, the chemical space occupied by such compounds is explored and described.
  3. Gels. 2022 Jul 21. pii: 457. [Epub ahead of print]8(7):
      The load-bearing function of articular cartilage tissue contrasts with the poor load-bearing capacity of most soft hydrogels used for its regeneration. The present study explores whether a hydrogel based on the methacrylated natural polymers chondroitin sulfate (CSMA) and hyaluronic acid (HAMA), injected into warp-knitted spacer fabrics, could be used to create a biomimetic construct with cartilage-like mechanical properties. The swelling ratio of the combined CSMA/HAMA hydrogels in the first 20 days was higher for hydrogels with a higher CSMA concentration, and these hydrogels also degraded quicker, whereas those with a 1.33 wt% of HAMA were stable for more than 120 days. When confined by a polyamide 6 (PA6) spacer fabric, the volumetric swelling of the combined CSMA/HAMA gels (10 wt%, 6.5 × CSMA:HAMA ratio) was reduced by ~53%. Both the apparent peak and the equilibrium modulus significantly increased in the PA6-restricted constructs compared to the free-swelling hydrogels after 28 days of swelling, and no significant differences in the moduli and time constant compared to native bovine cartilage were observed. Moreover, the cell viability in the CSMA/HAMA PA6 constructs was comparable to that in gelatin-methacrylamide (GelMA) PA6 constructs at one day after polymerization. These results suggest that using a HydroSpacer construct with an extracellular matrix (ECM)-like biopolymer-based hydrogel is a promising approach for mimicking the load-bearing properties of native cartilage.
    Keywords:  HydroSpacer; cartilage tissue engineering; chondroitin sulfate methacrylate; hyaluronic acid methacrylate; hydrogel; spacer fabric
  4. Mar Drugs. 2022 Jul 23. pii: 469. [Epub ahead of print]20(8):
      Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H- and 13C-Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.
    Keywords:  Gracilaria fisheri; V. harveyi; V. parahaemolyticus; antibacterial activity; hydrogen peroxide; low-molecular-weight sulfated galactans
  5. Proc Natl Acad Sci U S A. 2022 Aug 02. 119(31): e2203167119
      Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.
    Keywords:  cancer; covalent inhibition; heparan sulfate; heparanase; metastasis
  6. Chemistry. 2022 Jul 29.
      Heparan sulfate glycosaminoglycans provides extracellular matrix defense against heavy metals cytotoxicity. Identifying the precise glycan sequences that bind a particular heavy metal ion is a key for understanding those interactions. Here, electrochemical and surface characterization techniques were used to elucidate the relation between the glycans structural motifs, uronic acid stereochemistry, and sulfation regiochemistry to heavy metal ions binding. A divergent strategy was employed to access a small library of structurally well-defined tetrasaccharides analogs with different sulfation patterns and uronic acid compositions. These tetrasaccharides were electrochemically grafted onto glassy carbon electrodes and their response to heavy metal ions was monitored by electrochemical impedance spectroscopy. Key differences in the binding of Hg(II), Cd(II), and Pb(II) were associated with a combination of the uronic acid type and the sulfation pattern.
    Keywords:  Carbohydrates; Electrochemistry; heavy metal ions; sulfation pattern; uronic acid
  7. Mar Drugs. 2022 Jul 08. pii: 447. [Epub ahead of print]20(7):
      Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
    Keywords:  alga; immunomodulatory activity; structural characteristics; sulfated polysaccharide
  8. Front Integr Neurosci. 2022 ;16 934764
      Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.
    Keywords:  NG2; axonal coat; brevican; extracellular matrix; thalamus
  9. Biomater Adv. 2022 Jul 07. pii: S2772-9508(22)00297-7. [Epub ahead of print]139 213020
      The aim of current study is to tailor chitosan derivate which is water-soluble while presents original biological features of chitosan. For this purpose, the 6-O chitosan sulfate (CS) with naked amine groups was synthesized via regioselective modification of chitosan (C) during which both crosslinking capacity and antibacterial properties of the C were remained intact. This was achieved by sulfation the C under controlled acidic conditions using chlorosulfonic acid/sulfuric acid mixture. Subsequently, a chemically crosslinked hydrogel of the CS was used as a wound dressing substrate. The modified sulfate groups retained the biocompatibility of C and showed antibacterial effects against gram-positive and gram-negative bacteria. In addition, the presence of sulfate groups in the CS chemical structure improved its anticoagulant activity compared to the unmodified C. Both in vitro and in vivo enzyme-linked immunosorbent assay (ELISA) measurements showed that CS had a higher potential to bind and scavenger anti-inflammatory cytokines, including IL-6 and transforming growth factor-β (TGF-β), both of which play critical roles in the early stage of the wound healing process. After treatment of full-thickness wounds with CS hydrogels, the macrophage cells (c.a. 6 × 104 cells) expressed significantly more M2 phenotype markers compared to the C group (4.2 × 104 cells). Furthermore, the CS hydrogel induced better re-epithelialization and vascularization of full-thickness wounds in mice compared to the C hydrogel during 30 days.
    Keywords:  Chitosan sulfate; Dressing; Immune modulation; Regioselectivity; Wound healing
  10. Molecules. 2022 Jul 16. pii: 4543. [Epub ahead of print]27(14):
      Sialyl 6-sulfo Lewis X (6-sulfo sLeX) and its derivative sialyl 6-sulfo N-acetyllactosamine (LacNAc) are sialylated and sulfated glycans of sialomucins found in the high endothelial venules (HEVs) of secondary lymphoid organs. A component of 6-sulfo sLeX present in the core 1-extended O-linked glycans detected by the MECA-79 antibody was previously shown to exist in the lymphoid aggregate vasculature and bronchial mucosa of allergic and asthmatic lungs. The components of 6-sulfo sLeX in pulmonary tissues under physiological conditions remain to be analyzed. The CL40 antibody recognizes 6-sulfo sLeX and sialyl 6-sulfo LacNAc in O-linked and N-linked glycans, with absolute requirements for both GlcNAc-6-sulfation and sialylation. Immunostaining of normal mouse lungs with CL40 was performed and analyzed. The contribution of GlcNAc-6-O-sulfotransferases (GlcNAc6STs) to the synthesis of the CL40 epitope in the lungs was also elucidated. Here, we show that the expression of the CL40 epitope was specifically detected in the mesothelin-positive mesothelium of the pulmonary pleura. Moreover, GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5), but not GlcNAc6ST1 (encoded by Chst2) or GlcNAc6ST4 (encoded by Chst7), are required for the synthesis of CL40-positive glycans in the lung mesothelium. Furthermore, neither GlcNAc6ST2 nor GlcNAc6ST3 is sufficient for in vivo expression of the CL40 epitope in the lung mesothelium, as demonstrated by GlcNAc6ST1/3/4 triple-knock-out and GlcNAc6ST1/2/4 triple-knock-out mice. These results indicate that CL40-positive sialylated and sulfated glycans are abundant in the pleural mesothelium and are synthesized complementarily by GlcNAc6ST2 and GlcNAc6ST3, under physiological conditions in mice.
    Keywords:  mesothelium; sialomucin; sialyl 6-sulfo Lewis X; sulfated glycan; sulfotransferase
  11. Int J Mol Sci. 2022 Jul 09. pii: 7609. [Epub ahead of print]23(14):
      Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2's spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.
    Keywords:  SARS-CoV-2; cellular uptake; heparan sulfate proteoglycans; mouse; syndecans
  12. Cell Rep. 2022 Jul 26. pii: S2211-1247(22)00946-9. [Epub ahead of print]40(4): 111137
      In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.
    Keywords:  CP: Neuroscience; CSPGs; PTPσ; axonal regeneration and sprouting; functional recovery; neurogenesis; proximal MCAo; stroke
  13. PLoS One. 2022 ;17(7): e0268485
      Late-onset non-syndromic autosomal dominant hearing loss 9 (DFNA9) is a hearing impairment caused by mutations in the coagulation factor C homology gene (COCH). COCH encodes for cochlin, a major component of the cochlear extracellular matrix. Though biochemical and genetic studies have characterized the properties of wild-type and mutated cochlins derived from DFNA9, little is known about the underlying pathogenic mechanism. In this study, we established a cochlin reporter cell, which allowed us to monitor the interaction of cochlin with its ligand(s) by means of a β-galactosidase assay. We found a class of highly sulfated glycosaminoglycans (GAGs), heparin, that were selectively bound to cochlin. The interaction was distinctly abrogated by N-desulfation, but not by 2-O- or 6-O-desulfation. The binding of cochlin to GAG was diminished by all of the point mutations found in DFNA9 patients. Through GAG composition analysis and immunostaining using mouse cochlin/immunoglobulin-Fc fusion protein, we identified moderately sulfated GAGs in mouse cochlea tissue; this implies that cochlin binds to such sulfated GAGs in the cochlea. Since GAGs play an important role in cell growth and survival as co-receptors of signal transduction mechanisms, the interaction of cochlin with GAGs in the extracellular matrix could aid the pathological research of autosomal dominant late-onset hearing loss in DFNA9.
  14. Endocrine. 2022 Jul 30.
      PURPOSE: This study aims to evaluate the correlations between the severity of the disease and serum steroid levels by analyzing the serum steroid levels in COVID-19 patients with different levels of disease progression and the control group.METHODS: Morning serum Aldosterone, 11-deoxycortisol, Androstenedione, 17-hydroxyprogesterone, Dihydrotestosterone (DHT), Dehydroepiandrosterone (DHEA), Corticosterone, Dehydroepiandrosterone sulfate (DHEAS), Estrone, Estradiol, Progesterone, 11-deoxycorticosterone, Cortisol, Corticosterone, Androsterone, Pregnenolone, 17-hydroxypregnenolone and 21-deoxycortisol levels were measured in 153 consecutive patients were grouped as mild, moderate, and severe based on the WHO COVID-19 disease severity classification and the control group. Steroid hormone levels were analyzed at once with a liquid chromatography-tandem mass spectrometric method (LC-MS/MS).
    RESULTS: In our study, nearly all steroids were statistically significantly higher in the patients' group than in the control group (p < 0.001). Also, DHEA was an independent indicator of the disease severity with COVID-19 CONCLUSIONS: Our study reveals that the alteration in steroid hormone levels was correlated with disease severity. Also, steroid hormone levels should be followed up during COVID-19 disease management.
    Keywords:  Adrenal Insufficiency; COVID-19; Steroids; Tandem Mass Spectrometry
  15. Mar Drugs. 2022 Jul 15. pii: 458. [Epub ahead of print]20(7):
      Codium bernabei is a green alga that grows on Chilean coasts. The composition of its structural polysaccharides is still unknown. Hence, the aim of this work is to isolate and characterize the hot water extracted polysaccharide fractions. For this purpose, the water extracts were further precipitated in alcohol (TPs) and acid media (APs), respectively. Both fractions were characterized using different physicochemical techniques such as GC-MS, GPC, FTIR, TGA, and SEM. It is confirmed that the extracted fractions are mainly made of sulfated galactan unit, with a degree of sulfation of 19.3% (TPs) and 17.4% (ATs) and a protein content of 3.5% in APs and 15.6% in TPs. Other neutral sugars such as xylose, glucose, galactose, fucose, mannose, and arabinose were found in a molar ratio (0.05:0.6:1.0:0.02:0.14:0.11) for TPs and (0.05:0.31:1.0:0.03:0.1:0.13) for ATs. The molecular weight of the polysaccharide samples was lower than 20 kDa. Both polysaccharides were thermally stable (Tonset &gt; 190 °C) and showed antioxidant activity according to the ABTS•+ and DPPH tests, where TPs fractions had higher scavenging activity (35%) compared to the APs fractions. The PT and APTTS assays were used to measure the anticoagulant activity of the polysaccharide fractions. In general, the PT activity of the TPs and APs was not different from normal plasma values. The exception was the TPs treatment at 1000 µg mL-1 concentration. The APTTS test revealed that clotting time for both polysaccharides was prolonged regarding normal values at 1000 µg mL-1. Finally, the antitumor test in colorectal carcinoma (HTC-116) cell line, breast cancer (MCF-7) and human leukemia (HL-60) cell lines showed the cytotoxic effect of TPs and APs. Those results suggest the potential biotechnological application of sulfate galactan polysaccharides isolated from a Chilean marine resource.
    Keywords:  Codium bernabei; anticoagulant activity; antioxidant capacity; cytotoxic effect; polysaccharides; sulfated galactans
  16. Hum Mol Genet. 2022 Jul 28. pii: ddac172. [Epub ahead of print]
      Kallmann syndrome (KS) is a congenital disorder characterized by idiopathic hypogonadotropic hypogonadism and olfactory dysfunction. KS is linked to variants in more than 34 genes, which are scattered across the human genome and show disparate biological functions. Although the genetic basis of KS is well studied, the mechanisms by which disruptions of these diverse genes cause the same outcome of KS are not fully understood. Here we show that disruptions of KS-linked genes affect the same biological processes, indicating convergent molecular mechanisms underlying KS. We carried out machine learning-based predictions and found that KS-linked mutations in heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) are likely loss-of-function mutations. We next disrupted Hs6st1 and another KS-linked gene, fibroblast growth factor receptor 1 (Fgfr1), in mouse neuronal cells and measured transcriptome changes using RNA sequencing. We found that disruptions of Hs6st1 and Fgfr1 altered genes in the same biological processes, including the upregulation of genes in extracellular pathways and the downregulation of genes in chromatin pathways. Moreover, we performed genomics and bioinformatics analyses and found that Hs6st1 and Fgfr1 regulate gene transcription likely via the transcription factor Sox9/Sox10 and the chromatin regulator Chd7, which are also associated with KS. Together, our results demonstrate how different KS-linked genes work coordinately in a convergent signaling pathway to regulate the same biological processes, thus providing new insights into KS.
  17. J Clin Med. 2022 Jul 20. pii: 4213. [Epub ahead of print]11(14):
      Sulfated glycosaminoglycans (sGAGs) are likely to play an important role in the development and progression of rheumatoid arthritis (RA)-associated atherosclerosis. The present study investigated the effect of anti-tumor necrosis factor-α (anti-TNF-α) therapy in combination with methotrexate on plasma sGAG levels and serum markers of endothelial dysfunction. Among sGAG types, plasma chondroitin/dermatan sulfate (CS/DS) and heparan sulfate/heparin (HS/H) were characterized using electrophoretic fractionation. Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) and asymmetric dimethylarginine (ADMA) were measured by immunoassays. The measurements were carried out four times: at baseline and after 3, 9 and 15 months of anti-TNF-α therapy. All analyzed parameters, excluding ADMA, were significantly elevated in patients with RA before the implementation of biological therapy compared to healthy subjects. Performed anti-TNF-α treatment led to a successive decrease in HS/H levels toward normal values, without any effect on CS/DS levels in female RA patients. The treatment was also effective at lowering the serum levels of sVCAM-1, MCP-1, MMP-9 and ADMA. Moreover, a significant positive correlation was found between the circulating HS/H and the 28 joint disease activity score based on the erythrocyte sedimentation rate (DAS28-ESR, r = 0.408; p &lt;0.05), MCP-1 (r = 0.398; p &lt;0.05) and ADMA (r = 0.396; p &lt;0.05) in patients before the first dose of TNF-α inhibitor. In conclusion, a beneficial effect of anti-TNF-α therapy on cell-surface heparan sulfate proteoglycans (HSPGs)/HS turnover and endothelial dysfunction was observed in this study. This was manifested by a decrease in blood HS/H levels and markers of endothelial activation, respectively. Moreover, the decrease in the concentration of HS/H in the blood of patients during treatment, progressing with the decline in disease activity, indicates that the plasma HS/H profile may be useful for monitoring the efficacy of anti-TNF-α treatment in patients with RA.
    Keywords:  ADMA; MCP-1; MMP-9; anti-TNF-α treatment; heparan sulfate/heparin; rheumatoid arthritis; sVCAM-1
  18. Mar Drugs. 2022 Jun 24. pii: 412. [Epub ahead of print]20(7):
      Fucoidans encompass versatile and heterogeneous sulfated biopolysaccharides of marine origin, specifically brown algae and marine invertebrates. Their chemistry and bioactivities have been extensively investigated in the last few decades. The reported studies revealed diverse chemical skeletons in which l-fucose is the main sugar monomer. However, other sugars, i.e., galactose, mannose, etc., have been identified to be interspersed, forming several heteropolymers, including galactofucans/fucogalactans (G-fucoidans). Particularly, sulfated galactofucans are associated with rich chemistry contributing to more promising bioactivities than fucans and other marine polysaccharides. The previous reports in the last 20 years showed that G-fucoidans derived from Undaria pinnatifida were the most studied; 21 bioactivities were investigated, especially antitumor and antiviral activities, and unique biomedical applications compared to other marine polysaccharides were demonstrated. Hence, the current article specifically reviews the biogenic sources, chemistry, and outstanding bioactivities of G-fucoidans providing the opportunity to discover novel drug candidates.
    Keywords:  bioactives; brown seaweeds; fucoidans; heteropolysaccharides; structural features; sulfated galactofucans
  19. Sci Rep. 2022 Jul 26. 12(1): 12757
      The Madin-Darby canine kidney (MDCK) cell line is an in vitro model for influenza A virus (IAV) infection and propagation. MDCK-SIAT1 (SIAT1) and humanized MDCK (hCK) cell lines are engineered MDCK cells that express N-glycans with elevated levels of sialic acid (Sia) in α2,6-linkage (α2,6-Sia) that are recognized by many human IAVs. To characterize the N-glycan structures in these cells and the potential changes compared to the parental MDCK cell line resulting from engineering, we analyzed the N-glycans from these cells at different passages, using both mass spectrometry and specific lectin and antibody binding. We observed significant differences between the three cell lines in overall complex N-glycans and terminal galactose modifications. MDCK cells express core fucosylated, bisected complex-type N-glycans at all passage stages, in addition to expressing α2,6-Sia on short N-glycans and α2,3-Sia on larger N-glycans. By contrast, SIAT1 cells predominantly express α2,6-Sia glycans and greatly reduced level of α2,3-Sia glycans. Additionally, they express bisected, sialylated N-glycans that are scant in MDCK cells. The hCK cells exclusively express α2,6-Sia glycans. Unexpectedly, hCK glycoproteins bound robustly to the plant lectin MAL-1, indicating α2,3-Sia glycans, but such binding was not Sia-dependent and closely mirrored that of an antibody that recognizes glycans with terminal 3-O-sulfate galactose (3-O-SGal). The 3-O-SGal epitope is highly expressed in N-glycans on multiple hCK glycoproteins. These results indicate vastly different N-glycomes between MDCK cells and the engineered clones that could relate to IAV infectivity.
  20. Front Aging Neurosci. 2022 ;14 892754
      Introduction: Elevated cortisol levels have been reported in Alzheimer's disease (AD) and may accelerate the development of brain pathology and cognitive decline. Dehydroepiandrosterone sulfate (DHEAS) has anti-glucocorticoid effects and it may be involved in the AD pathophysiology.Objectives: To investigate associations of cerebrospinal fluid (CSF) cortisol and DHEAS levels with (1) cognitive performance at baseline; (2) CSF biomarkers of amyloid pathology (as assessed by CSF Aβ levels), neuronal injury (as assessed by CSF tau), and tau hyperphosphorylation (as assessed by CSF p-tau); (3) regional brain volumes; and (4) clinical disease progression.
    Materials and Methods: Individuals between 49 and 88 years (n = 145) with mild cognitive impairment or dementia or with normal cognition were included. Clinical scores, AD biomarkers, brain MRI volumetry along with CSF cortisol and DHEAS were obtained at baseline. Cognitive and functional performance was re-assessed at 18 and 36 months from baseline. We also assessed the following covariates: apolipoprotein E (APOE) genotype, BMI, and education. We used linear regression and mixed models to address associations of interest.
    Results: Higher CSF cortisol was associated with poorer global cognitive performance and higher disease severity at baseline. Cortisol and cortisol/DHEAS ratio were positively associated with tau and p-tau CSF levels, and negatively associated with the amygdala and insula volumes at baseline. Higher CSF cortisol predicted more pronounced cognitive decline and clinical disease progression over 36 months. Higher CSF DHEAS predicted more pronounced disease progression over 36 months.
    Conclusion: Increased cortisol in the CNS is associated with tau pathology and neurodegeneration, and with decreased insula and amygdala volume. Both CSF cortisol and DHEAS levels predict faster clinical disease progression. These results have implications for the identification of patients at risk of rapid decline as well as for the development of interventions targeting both neurodegeneration and clinical manifestations of AD.
    Keywords:  Alzheimer’s disease; DHEAS; cerebrospinal fluid; cognitive decline; cortisol; neurodegeneration
  21. Pathophysiology. 2022 Jul 13. 29(3): 365-373
      Intravesical chemotherapy may cause chemical cystitis and related lower urinary tract symptoms (LUTS). The aims of this study were to evaluate the efficacy and safety of an oral preparation of hyaluronic acid (HA), chondroitin sulfate (CS), curcumin, and quercetin (Ialuril® Soft Gels) to reduce the severity of LUTS in patients with a history of bladder cancer (BCa) undergoing intravesical chemotherapy. We designed a monocentric, randomized, double-blind, placebo-controlled pilot trial. Patients referred to our institute between November 2016 and March 2018 were enrolled. All subjects had non-muscle-invasive BCa and received intravesical chemotherapy with mitomycin C (MMC). Patients were randomized 1:1 in two groups (intervention vs. control). All subjects underwent oral administration (Ialuril® Soft Gels or placebo) starting one week before the first weekly instillation and ending 30 days after the last one, subsequently starting one week before each monthly instillation and ending 14 days after it. International prostate symptom score (IPSS) and 0-100 visual analogue scale (VAS) were used to assess the efficacy of the treatment. Adverse events were also described. Patients were evaluated at baseline and after 1, 4, 7, and 13 months of intravesical chemotherapy. A total of 34 patients were enrolled. The median IPSS score was significantly lower in the intervention group compared to the control group at 4 (13 vs. 17 points; p = 0.038), 7 (10 vs. 18 points; p &lt; 0.001), and 13 (10 vs. 17 points; p = 0.002) months. The median VAS score was significantly lower in the intervention group compared to the control group at 7 (22 vs. 37 points; p = 0.021) and 13 (20 vs. 35 points; p = 0.024) months. No AE specifically related to supplement or placebo was recorded. Oral formulation of HA, CS, quercetin, and curcumin could be an effective and safe supportive therapy against chemical cystitis in patients receiving intravesical chemotherapy for BCa.
    Keywords:  LUTS; hyaluronic acid; intravesical chemotherapy; oral formulation
  22. Gels. 2022 Jun 25. pii: 406. [Epub ahead of print]8(7):
      Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug's adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate-co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.
    Keywords:  dissolution; ibuprofen; pH-sensitive hydrogels; swelling