bims-senagi Biomed News
on Senescence and aging
Issue of 2022‒04‒17
forty papers selected by
Maria Grazia Vizioli
Mayo Clinic

  1. Int J Mol Sci. 2022 Mar 26. pii: 3652. [Epub ahead of print]23(7):
      Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP-AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
    Keywords:  ageing; cancer; citrate; energy; metabolism; senescence; telomere; transport
  2. Cells. 2022 Mar 31. pii: 1185. [Epub ahead of print]11(7):
      Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell's ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA's role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases.
    Keywords:  age-related diseases; ageing; endothelial cells; endothelial dysfunction; micro-RNA; senescence
  3. J Clin Invest. 2022 Apr 15. pii: e148073. [Epub ahead of print]132(8):
      Cellular senescence plays an important role in human diseases, including osteoporosis and osteoarthritis. Senescent cells (SCs) produce the senescence-associated secretory phenotype to affect the function of neighboring cells and SCs themselves. Delayed fracture healing is common in the elderly and is accompanied by reduced mesenchymal progenitor cells (MPCs). However, the contribution of cellular senescence to fracture healing in the aged has not to our knowledge been studied. Here, we used C57BL/6J 4-month-old young and 20-month-old aged mice and demonstrated a rapid increase in SCs in the fracture callus of aged mice. The senolytic drugs dasatinib plus quercetin enhanced fracture healing in aged mice. Aged callus SCs inhibited the growth and proliferation of callus-derived MPCs (CaMPCs) and expressed high levels of TGF-β1. TGF-β-neutralizing Ab prevented the inhibitory effects of aged callus SCs on CaMPCs and promoted fracture healing in aged mice, which was associated with increased CaMPCs and proliferating cells. Thus, fracture triggered a significant cellular senescence in the callus cells of aged mice, which inhibited MPCs by expressing TGF-β1. Short-term administration of dasatinib plus quercetin depleted callus SCs and accelerated fracture healing in aged mice. Senolytic drugs represent a promising therapy, while TGF-β1 signaling is a molecular mechanism for fractures in the elderly via SCs.
    Keywords:  Aging; Bone Biology; Bone disease; Cellular senescence; Osteoclast/osteoblast biology
  4. Cells. 2022 Apr 04. pii: 1222. [Epub ahead of print]11(7):
      Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
    Keywords:  HIV; SASP; cancer; senescence; senolytic; senostatic; senotherapy
  5. Cells. 2022 Mar 24. pii: 1089. [Epub ahead of print]11(7):
      Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
    Keywords:  SACTAI; SASP; aging-related disease; cell senescence; mesenchymal stem cell
  6. Aging (Albany NY). 2022 Apr 13. 14(undefined):
      Parabiosis is a well-established method to facilitate a shared blood supply between two conjoined animals. In particular, the pairing of mice of dissimilar ages, termed heterochronic parabiosis, has been used extensively for differentiating cell autonomous and non-autonomous mechanisms of aging. Analysis of heterochronic parabionts also has helped to identify individual circulating factors that may act as either pro- or anti-geronics. Heterochronic parabiosis also has proven to be a valuable experimental system to evaluate the effects of specific hallmarks of aging on the process of aging. For example, heterochronic parabiosis was used recently to examine whether cellular senescence was driven via cell autonomous and/or non-autonomous mechanisms. As anticipated, markers of cellular senescence were elevated in old isochronically-paired mice relative to young controls. However, compared to old isochronically paired mice, the senescent cell burden was reduced in multiple tissues of old parabionts joined with young mice. This suggests that the rejuvenation of cells and tissues in old mice by exposure to young blood could be mediated, in part, through suppression or immune clearance of senescent cells. Conversely, young heterochronic parabionts showed increased markers of cellular senescence, demonstrating that exposure to an old circulation is able to drive senescence through a cell non-autonomous mechanism(s), likely contributing to accelerated aging in the young mice. Thus, heterochronic parabiosis is still an important methodology that should continue to be leveraged for evaluating other hallmarks of aging and their mechanisms.
    Keywords:  aging; cellular senescence; geroscience; heterochronic parabiosis
  7. Geroscience. 2022 Apr 11.
      Although there is growing evidence that cellular senescence influences wound healing, a clear understanding of how senescence can be beneficial and/or detrimental to wound healing is unknown. Wound healing may also be influenced by the baseline tissue senescence, which is elevated in aging and chronic wounds, both of which have significant healing delays. To study the effects of skin senescence on wound healing, we developed an elevated skin senescence model based on the subcutaneous transfer of irradiated fibroblasts into young 8-week-old wild-type C57BL/6 male mice. This senescent cell transfer significantly increased skin senescence levels compared to control transfers of non-irradiated fibroblasts. There was an increased presence of SA-β-Gal- and p21-positive senescent cells throughout the skin. Furthermore, the entire skin showed significantly elevated gene expression of senescence (p16, p21) and SASP markers (IL-6, MCP-1, MMP-3, MMP-9, and TGF-β). Subsequent wound healing in the skin with elevated senescence was markedly delayed and had similar kinetics to naturally aged 2-year-old mice. After the wounds had healed, the skin developed persistently elevated senescence. Our results demonstrate that states of elevated skin senescence can delay wound healing and result in sustained senescence after healing. Therefore, the accumulation of senescent cells in aged skin or chronic wounds may be a driver of delayed healing and can be considered a potential target to improve healing.
    Keywords:  Aging; Cell; Mouse; Senescence; Wound healing
  8. Cells. 2022 Mar 25. pii: 1106. [Epub ahead of print]11(7):
      Accumulation of senescent chondrocytes is thought to drive inflammatory processes and subsequent cartilage degeneration in age-related as well as posttraumatic osteoarthritis (OA). However, the underlying mechanisms of senescence and consequences on cartilage homeostasis are not completely understood so far. Therefore, suitable in vitro models are needed to study chondrocyte senescence. In this study, we established and evaluated a doxorubicin (Doxo)-based model of stress-induced premature senescence (SIPS) in human articular chondrocytes (hAC). Cellular senescence was determined by the investigation of various senescence associated (SA) hallmarks including β-galactosidase activity, expression of p16, p21, and SA secretory phenotype (SASP) markers (IL-6, IL-8, MMP-13), the presence of urokinase-type plasminogen activator receptor (uPAR), and cell cycle arrest. After seven days, Doxo-treated hAC displayed a SIPS-like phenotype, characterized by excessive secretion of SASP factors, enhanced uPAR-positivity, decreased proliferation rate, and increased β-galactosidase activity. This phenotype was proven to be stable seven days after the removal of Doxo. Moreover, Doxo-treated hAC exhibited increased granularity and flattened or fibroblast-like morphology. Further analysis implies that Doxo-mediated SIPS was driven by oxidative stress as demonstrated by increased ROS levels and NO release. Overall, we provide novel insights into chondrocyte senescence and present a suitable in vitro model for further studies.
    Keywords:  ROS; SASP; SIPS; aging; chondrocytes; doxorubicin; osteoarthritis; oxidative stress; senescence; uPAR
  9. Cell Metab. 2022 Apr 05. pii: S1550-4131(22)00098-5. [Epub ahead of print]
      Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability. Additionally, we discovered that SREBP1c may play a key role in genome stability and senescence in adipocytes by modulating DNA-damage responses. Unexpectedly, SREBP1c interacted with PARP1 and potentiated PARP1 activity during DNA repair, independent of its canonical lipogenic function. The genetic depletion of SREBP1c accelerated adipocyte senescence, leading to immune cell recruitment into obese adipose tissue. These deleterious effects provoked unhealthy adipose tissue remodeling and insulin resistance in obesity. In contrast, the elimination of senescent adipocytes alleviated adipose tissue inflammation and improved insulin resistance. These findings revealed distinctive roles of SREBP1c-PARP1 axis in the regulation of adipocyte senescence and will help decipher the metabolic significance of senescence in obesity.
    Keywords:  DNA repair process; PARP1; SASP; SREBP1c; adipocyte; adipose tissue inflammation; cellular senescence; energy homeostasis; insulin resistance; obesity
  10. Int J Mol Sci. 2022 Apr 01. pii: 3911. [Epub ahead of print]23(7):
      Chemotherapy remains the most common cancer treatment. Although chemotherapeutic drugs induce tumor cell senescence, they are often associated with post-therapy tumor recurrence by inducing the senescence-associated secretory phenotype (SASP). Therefore, it is important to identify effective strategies to induce tumor cell senescence without triggering SASP. In this study, we used the small molecule inhibitors, UNC0642 (G9a inhibitor) and UNC1999 (EZH2 inhibitor) alone or in combination, to inhibit H3K9 and H3K27 methylation in different cancer cells. Dual inhibition of H3K9me2 and H3K27me3 in highly metastatic tumor cells had a stronger pro-senescence effect than either inhibitor alone and did not trigger SASP in tumor cells. Dual inhibition of H3K9me2 and H3K27me3 suppressed the formation of cytosolic chromatin fragments, which inhibited the cGAS-STING-SASP pathway. Collectively, these data suggested that dual inhibition of H3K9 and H3K27 methylation induced senescence of highly metastatic tumor cells without triggering SASP by inhibiting the cGAS-STING-SASP pathway, providing a new mechanism for the epigenetics-based therapy targeting H3K9 and H3K27 methylation.
    Keywords:  CCF; H3K27me3; H3K9me2; SASP; tumor cell senescence
  11. J Clin Invest. 2022 Apr 15. pii: e158871. [Epub ahead of print]132(8):
      Increased age is blamed for a wide range of bone physiological changes, and although the underlying mechanisms affecting the decreased capacity for fracture healing are not fully understood, they are clearly linked to changes at the cellular level. Recent evidence suggests potential roles of senescent cells in response to most tissue injuries, including bone fractures. In this issue of the JCI, Liu, Zhang, and co-authors showed that a senolytic drug cocktail cleared senescent cells from the callus and improved bone fracture repair in aged mice. Understanding how senescent cells emerge at fracture sites and how their timely removal improves fracture healing should provide insights for effective therapeutic approaches in old age.
  12. Exp Gerontol. 2022 Apr 06. pii: S0531-5565(22)00108-5. [Epub ahead of print]163 111800
      With a rise in the need to develop anti-aging drugs, a growing number of in vivo studies evaluating the efficacy of potential drug candidates have used doxorubicin-induced aging mice. However, changes in the biomarkers of senescent cells have not been reported in detail in these animals. To lay a foundation for the use of doxorubicin-induced aging mice, we examined the biomarkers of hepatic and renal senescent cells in these mice. We found that the 5 mg/kg doxorubicin dose is optimal to induce cellular senescence in mice. Subsequently, using this dose, we found that doxorubicin-induced an increase in senescence-associated β-galactosidase (SA-β-gal) positive cells in the kidney and lipofuscin accumulation in the liver. Some markers of senescent cells (p21WAF1/CIP1, p16INK4A, and γH2AX) were also significantly upregulated by doxorubicin and then counteracted by metformin treatment. These preliminary findings support the application of doxorubicin-induced aging mice as an animal model to evaluate the efficacy of anti-aging drug candidates.
    Keywords:  Doxorubicin; Metformin; Mice; Senescence
  13. Front Cell Dev Biol. 2022 ;10 884910
    Keywords:  SASP; ageing; cellular senescence; senescence markers; senotherapeutics
  14. Cell Mol Gastroenterol Hepatol. 2022 Apr 07. pii: S2352-345X(22)00068-6. [Epub ahead of print]
      BACKGROUND & AIMS: Cellular senescence is frequently present in injured livers. The induction mechanism and the pathological role are not always clear. We aimed to understand the dynamics of senescence induction and progression, and the mechanism responsible for the pathology using a mouse model that disables the essential process of autophagy.METHODS: Mice deficient in key autophagy genes, Atg7 or Atg5, in the livers were used. Senescence was measured using established cellular and molecular signatures. The mechanistic roles of NRF2, FOXK1 and CCR2 were assessed using mouse genetic models. Liver functions, pathology and tumor development were measured using biochemical and histological approaches.
    RESULTS: Inducible deletion of Atg7 rapidly upregulated cyclin dependent kinase inhibitors (CDKi) independently of injury and induced senescence-associated β-galactosidase activities and senescence associated secretory phenotype (SASP). Sustained activation of NRF2 was the major factor causing senescence by mediating oxidative DNA damage and upregulating CCL2, a key component of autophagy-related SASP, via the NRF2-FOXK1 axis. Senescence was responsible for hepatic inflammation through CCR2-mediated recruitment of CD11b+ monocytes and CD3+ T cells. CCR2-mediated process in turn enhanced senescence and SASP by upregulating CDKi and chemokines. Thus, senescence and inflammation can mutually augment each other, forming an amplification loop for both events. CCR2-mediated process also modulated liver injury and tumor progression at the later stage of autophagy deficiency related pathology.
    CONCLUSIONS: These results provide the insight that hepatic senescence can occur early in the disease process, triggers inflammation and is enhanced by inflammation, and has long-term effects on liver injury and tumor progression.
    Keywords:  CCR2; CD11b; CDK inhibitors; chemokines; liver injury
  15. Oxid Med Cell Longev. 2022 ;2022 2713483
      There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.
  16. Front Pharmacol. 2022 ;13 791612
      Accumulating evidence suggests that senescence of kidney tubule epithelial cells leads to fibrosis. These cells secrete senescence-associated secretory phenotype (SASP) factors that are involved in diverse signaling pathways, influencing kidney fibrosis. Here, we investigated whether our previously established conditionally immortalized proximal tubule epithelial cell line overexpressing the organic anion transporter 1 (ciPTEC-OAT1) can be used as a valid in vitro model to study kidney senescence and senolytics response. CiPTEC-OAT1 proliferates rapidly at 33°C and exhibits a "senescence-like" arrest at 37°C, most likely due to suppression of SV40T expression and subsequent reactivation of the p53 and Rb pathways. To understand how permissive (33°C) and non-permissive (37°C) temperatures of the cell culture affect the senescence phenotype, we cultured ciPTEC-OAT1 for up to 12 days and evaluated the apoptosis and SASP markers. Day 0 in both groups is considered as the non-senescence group (control). Further, the potential of navitoclax, dasatinib, quercetin, and the combination of the latter two to clear senescent cells was evaluated. Maturation of ciPTEC-OAT1 at non-permissive temperature affected mRNA and protein levels of senescence markers. A remarkable upregulation in p21 gene expression was found in the non-permissive temperature group, whereas expression of Lamin B1 decreased significantly. SASP factors, including PAI-1A, IL-1β, CTGF, and IL-6 were upregulated, but no significant difference in Bcl-2 and Bcl-xl were found in the non-permissive temperature group. After culturing ciPTEC-OAT1 up to 12 days, cells in the non-permissive temperature group showed an upregulation in the apoptosis-associated proteins Bcl-2, BID, and Bax, and a downregulation in Mcl-1, Bad, Bak, and Bim at various time points. Further, Bcl-xl, Puma, Caspase 3, Caspase 7, and Caspase 9 showed initial upregulations followed by downregulations at later time points. The loss of Lamin B1, upregulation of SA-β-gal expression and increase in its activity, upregulation of p21 levels and downregulation of p53, along with the upregulation of SASP factors, confirmed that maturation at 37°C promotes senescence features. Finally, the senolytics response was evaluated by testing cell viability following exposure to senolytics, to which cells appeared dose-dependently sensitive. Navitoclax was most effective in eliminating senescent cells. In conclusion, culturing ciPTEC-OAT1 at 37°C induces a senescence phenotype characterized by increased expression of cell cycle arrest and anti-apoptosis markers, SASP factors, and responsiveness to senolytics treatment. Therefore, ciPTEC-OAT1 represents a valid model for studying kidney senescence by simply adjusting culture conditions.
    Keywords:  Bcl-2 family proteins; apoptosis; cell cycle arrest; conditionally immortalized proximal tubule epithelial cell; kidney fibrosis; senescence-associated secretory phenotype (SASP)
  17. Int J Mol Sci. 2022 Mar 25. pii: 3612. [Epub ahead of print]23(7):
      Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
    Keywords:  aging; iron chelator; iron metabolism; mitochondria; neurodegenerative diseases
  18. Mol Cell Oncol. 2021 ;8(6): 1985930
      We recently identified Zinc-finger protein 768 (ZNF768) as a novel transcription factor controlling cell fate decision downstream of Rat sarcoma virus (RAS). We showed that ZNF768 depletion impairs cell cycle progression and triggers cellular senescence, while its overexpression allows cells to bypass oncogene-induced senescence. Elevated ZNF768 levels is common in tumors, suggesting that ZNF768 may help to escape cellular senescence, sustain proliferation and promote malignant transformation. Here, we discuss these recent findings and highlight key questions emerging from our work.
  19. Ann Surg Oncol. 2022 Apr 10.
      BACKGROUND: The outcome of pancreatic ductal adenocarcinoma (PDAC) is unsatisfactory, and the identification of novel therapeutic targets is urgently needed. Clinical studies on the antisense oligonucleotide that targets clusterin (CLU) expression have been conducted and have shown efficacy in other cancers. We aimed to investigate the effects of CLU in PDAC and the underlying mechanisms with a view to the clinical application of existing drugs.METHODS: We knocked down CLU in PDAC cells and evaluated changes in cell proliferation. To elucidate the mechanism responsible for these changes, we performed western blot analysis, cell cycle assay, and senescence-associated β-galactosidase (SA-β-gal) staining. To evaluate the clinical significance of CLU, immunohistochemistry was performed, and CLU expression was analyzed in specimens resected from PDAC patients not treated with preoperative chemotherapy.
    RESULTS: Knockdown of CLU significantly decreased cell proliferation and did not induce apoptosis, but did induce cellular senescence by increasing the percentage of G1-phase and SA-β-gal staining-positive cells. A marker of DNA damage such as γH2AX and factors related to cellular senescence, such as p21 and the senescence-associated secretory phenotype, were upregulated by knockdown of CLU. CLU expression in resected PDAC specimens was located in the cytoplasm of tumor cells and revealed significantly better recurrence-free survival and overall survival in the CLU-low group than in the CLU-high group.
    CONCLUSIONS: We identified that CLU inhibition leads to cellular senescence in PDAC. Our findings suggest that CLU is a novel therapeutic target that contributes to the prognosis of PDAC by inducing cellular senescence.
  20. Brief Bioinform. 2022 Apr 13. pii: bbac118. [Epub ahead of print]
      Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.
    Keywords:  cellular senescence; immunotherapy; machine learning; pan-cancer; single-cell
  21. Cell Death Dis. 2022 Apr 11. 13(4): 329
      HuD, an RNA binding protein, plays a role in the regulation of gene expression in certain types of cells, including neuronal cells and pancreatic β-cells, via RNA metabolism. Its aberrant expression is associated with the pathogenesis of several human diseases. To explore HuD-mediated gene regulation, stable cells expressing short hairpin RNA against HuD were established using mouse neuroblastoma Neuro2a (N2a) cells, which displayed enhanced phenotypic characteristics of cellular senescence. Two approaches, RNA immunoprecipitation (RNA IP)-NanoString profiling and cytokine array, were used to subsequently identify a subset of putative HuD targets that act as senescence-associated secretory phenotype (SASP), including C-C motif ligand 2 (CCL2), CCL20, C-X-C motif chemokine ligand 2 (CXCL2), and interleukin-6 (IL-6). Here, we further demonstrated that HuD regulates the expression of CCL2, a SASP candidate upregulated in cells following HuD knockdown, by binding to the 3'-untranslated region (UTR) of Ccl2 mRNA. Downregulation of HuD increased the level of CCL2 in N2a cells and the brain tissues of HuD knockout (KO) mice. Exposure to γ-irradiation induced cellular senescence in N2a cells and HuD knockdown facilitated stress-induced cellular senescence. Our results reveal that HuD acts as a novel regulator of CCL2 expression, and its aberrant expression may contribute to cellular senescence by regulating SASP production.
  22. Ageing Res Rev. 2022 Apr 11. pii: S1568-1637(22)00063-0. [Epub ahead of print] 101621
      Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
    Keywords:  Aging; DAF-16; FOXO3; geroprotector; nutraceutical; pharmaceutical
  23. Front Genet. 2022 ;13 865811
      Myotonic dystrophy type 1 (DM1) is a dominantly inherited disorder due to a toxic gain of function of RNA transcripts containing expanded CUG repeats (CUGexp). Patients with DM1 present with multisystemic symptoms, such as muscle wasting, cognitive impairment, cataract, frontal baldness, and endocrine defects, which resemble accelerated aging. Although the involvement of cellular senescence, a critical component of aging, was suggested in studies of DM1 patient-derived cells, the detailed mechanism of cellular senescence caused by CUGexp RNA remains unelucidated. Here, we developed a DM1 cell model that conditionally expressed CUGexp RNA in human primary cells so that we could perform a detailed assessment that eliminated the variability in primary cells from different origins. Our DM1 model cells demonstrated that CUGexp RNA expression induced cellular senescence by a telomere-independent mechanism. Furthermore, the toxic RNA expression caused mitochondrial dysfunction, excessive reactive oxygen species production, and DNA damage and response, resulting in the senescence-associated increase of cell cycle inhibitors p21 and p16 and secreted mediators insulin-like growth factor binding protein 3 (IGFBP3) and plasminogen activator inhibitor-1 (PAI-1). This study provides unequivocal evidence of the induction of premature senescence by CUGexp RNA in our DM1 model cells.
    Keywords:  IGFBP3; PAI-1; cellular senescence; myotonic dystrophy; reactive oxygen species; repeat expansion
  24. Molecules. 2022 Apr 02. pii: 2316. [Epub ahead of print]27(7):
      Aging is a continuous process over time that is mainly related to natural alterations in mechanical-biological processes. This phenomenon is due to several factors, including the time and energy of biological processes. Aging can be attributed to biological factors such as oxidative stress, cell longevity, and stem cell senescence. Currently, aging is associated with several diseases, such as neurodegenerative diseases, cancer, and other diseases related to oxidative stress. In addition, certain natural molecules, including those derived from vegetables, have shown the ability to delay the aging process. Their effects are linked to different mechanisms of action, such as tissue regeneration and the activation of longevity and anti-senescence genes. The present work discusses the impact of vegetables, and bioactive compounds isolated from vegetables, against the physiological and pathological aging process and accompanying human diseases.
    Keywords:  aging; anti-aging activity; apoptosis; natural compounds; senescence; vegetables; wrinkles
  25. Phytomedicine. 2022 Mar 26. pii: S0944-7113(22)00159-3. [Epub ahead of print]100 154081
      BACKGROUND: Patients with diabetes have accelerated vascular aging when compared with healthy individuals. Hyperglycemia, especially intermittent high glucose (IHG), is the main cause of vascular endothelial senescence. Capsaicin, a major component of chili pepper is thought to contribute to cardiovascular protection by spicy food.OBJECTIVE: To investigate the pathway related with the effects of capsaicin on endothelial cell senescence induced by IHG.
    METHODS: HUVECs were exposed to IHG (5 mM or 33 mM glucose, alternating every 12 hours for 3 days) and treated with capsaicin at 0.3, 1 and 3 μM. To determine endothelial cell senescence, we examined the senescence-related β-galactosidase staining, cell cycle arrest, cell viability, as well as production of reactive oxygen species (ROS). To evaluate the involvement of TRPV1/[Ca2+]i/CaMKII/AMPK/SIRT1 pathway in anti- senescence effects of capsaicin, HUVECs were treated with CAPZ (a TRPV1 antagonist), BAPTA-AM (an intracellular calcium chelator), KN62 (a CaMKII antagonist), compound C (an AMPK inhibitor), or EX527 (a SIRT1 inhibitor). To knockdown TRPV1, HUVECs were transfected with shRNA lentivirus targeting TRPV1. The levels of SIRT1, p21, TRPV1, AMPK and phospho-AMPK were evaluated by western blotting.
    RESULTS: IHG suppressed the levels of SIRT1 and enhanced endothelial senescence. Capsaicin upregulated SIRT1 expression and downregulated the senescence marker, p21, thereby protecting endothelial cells from IHG-induced senescence as indicated by relieved G0/G1 phase arrest, improved cell viabilities, and reduced counts of senescent cells and ROS production. Pre-treatment with CAPZ, BAPTA-AM, KN62 or compound C abrogated the anti-senescence effects of capsaicin. Capsaicin restored AMPK phosphorylation and IHG-inhibited TRPV1 expression. Moreover, TRPV1 silencing suppressed SIRT1 expression and abolished the anti-senescence effects of capsaicin.
    CONCLUSION: Capsaicin elevates SIRT1 levels through TRPV1/[Ca2+]i/CaMKII/AMPK pathway and suppresses IHG-mediated endothelial cell senescence. This study provides initial evidence that capsaicin is a potential candidate for the prevention of vascular aging in diabetes.
    Keywords:  Capsaicin; Endothelial senescence; Intermittent high glucose; SIRT1; TRPV1
  26. Aging Cell. 2022 Apr 15. e13609
      Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
    Keywords:  DNA damage; DNA repair; aging; autophagy; human dermal fibroblasts; proteomics; reactive oxygen species; ribosome biogenesis
  27. Blood Sci. 2021 Jan;3(1): 1-5
      Hematopoietic stem cells (HSCs) replenish all lineages of blood cells throughout the lifespan. During aging, the repopulation capacity of HSCs declined, and aged HSCs display a tendency for myeloid differentiation. Several intrinsic and extrinsic factors have been identified to promote HSCs aging. In this review, we focus on the contribution of aging-associated inflammation in provoking HSCs aging and discuss the future research direction of inflammation and HSC aging.
    Keywords:  Hematopoietic stem cells aging; Inflammation
  28. Trends Biochem Sci. 2022 Apr 06. pii: S0968-0004(22)00067-6. [Epub ahead of print]
      Age-associated changes in mitochondria are closely involved in aging. Apart from the established roles in bioenergetics and biosynthesis, mitochondria are signaling organelles that communicate their fitness to the nucleus, triggering transcriptional programs to adapt homeostasis stress that is essential for organismal health and aging. Emerging studies revealed that mitochondrial-to-nuclear (mito-nuclear) communication via altered levels of mitochondrial metabolites or stress signals causes various epigenetic changes, facilitating efforts to maintain homeostasis and affect aging. Here, we summarize recent studies on the mechanisms by which mito-nuclear communication modulates epigenomes and their effects on regulating the aging process. Insights into understanding how mitochondrial metabolites serve as prolongevity signals and how aging affects this communication will help us develop interventions to promote longevity and health.
    Keywords:  UPR(mt); aging; epigenetic regulation; longevity; mitochondrial metabolites; mitochondrial–nuclear communication
  29. RSC Adv. 2022 Feb 03. 12(8): 4543-4549
      A methylene blue (MB)-based beta-galactosidase (β-gal) activatable molecule, Gal-MB, was developed for senescence imaging and light-triggered senolysis. When in contact with LacZ β-gal or senescence-associated β-gal (SA-β-gal), the photoinsensitive Gal-MB becomes fluorescent. Gal-MB also offered selective phototoxicity toward LacZ β-gal expressing cells and drug-induced senescent cells, which express SA-β-gal, after light illumination at 665 nm.
  30. Aging Cell. 2022 Apr 15. e13612
      In high-income countries, women tend to give birth at increasingly advanced ages. Despite its physiological, developmental, and medical consequences, why this tendency significantly affects genetic stability of the offspring remains largely unresolved. Accumulating evidence indicates that the higher the age of the mother at fertilization, the more intense the activity of transposable elements causing insertional mutations in functional DNA stretches in her oocyte involved in zygote formation.
    Keywords:  5-methylcytosine; aging; epigenetic reprogramming; genomic instability; maternal age; transposon
  31. Cell Mol Life Sci. 2022 Apr 16. 79(5): 242
      Simian virus 40 (SV40) is a potentially oncogenic virus of monkey origin. Transmission, prevalence, and pathogenicity rates of SV40 are unclear, but infection can occur in humans, for example individuals with high contact with rhesus macaques and individuals that received contaminated early batches of polio vaccines in 1950-1963. In addition, several human polyomaviruses, proven carcinogenic, are also highly common in global populations. Cellular senescence is a major mechanism of cancer prevention in vivo. Hyperactivation of Ras usually induces cellular senescence rather than cell transformation. Previous studies suggest small t antigen (ST) of SV40 may interfere with cellular senescence induced by Ras. In the current study, ST was demonstrated to inhibit Ras-induced cellular senescence (RIS) and accumulation of DNA damage in Ras-activated cells. In addition, ST suppressed the signal transmission from BRaf to MEK and thus blocked the downstream transmission of the activated Ras signal. B56γ knockdown mimicked the inhibitory effects of ST overexpression on RIS. Furthermore, KSR1 knockdown inhibited Ras activation and the subsequent cellular senescence. Further mechanism studies indicated that the phosphorylation level of KSR1 rather than the levels of the total protein regulates the activation of Ras signaling pathway. In sum, ST inhibits the continuous hyperactivation of Ras signals by interfering with the normal functions of PP2A-B56γ of dephosphorylating KSR1, thus inhibiting the occurrence of cellular senescence. Although the roles of SV40 in human carcinogenesis are controversial so far, our study has shown that ST of polyomaviruses has tumorigenic potential by inhibiting oncogene-induced senescence (OIS) as a proof of concept.
    Keywords:  Braf; Cellular senescence; KSR1; PP2A-B56γ; Ras; Small T
  32. Int J Mol Sci. 2022 Apr 05. pii: 4014. [Epub ahead of print]23(7):
      Previous research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10-15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-βgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers. IR-induced senescent AF cells exhibited increased matrix catabolism, including elevated matrix metalloproteinase (MMP)-1 and -3 protein expression and aggrecanolysis. Analogous results were seen with whole body IR-exposed mice, demonstrating that genotoxic stress also drives disc cellular senescence and matrix catabolism in vivo. These results have important clinical implications in the potential adverse effects of ionizing radiation on spinal health.
    Keywords:  DNA damage; aging; cellular senescence; genotoxic stress; intervertebral disc degeneration; ionization radiation
  33. Drug Dev Res. 2022 Apr 13.
      Dendrobine has potential advantages in suppressing atherosclerosis (AS). FK506-binding protein 1A (FKBP1A) is implicated in the regulation of autophagy, inflammation, and apoptosis. To reveal the mechanism by which dendrobine inhibits AS by modulating autophagy, oxidative stress, apoptosis, and senescence. An in vitro AS cell model was induced by culturing human umbilical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL). The cells were treated with dendrobine alone or in combination with short hairpin RNA (shRNA) targeting FKBP1A or together with 3-methyladenine (3MA), an autophagy inhibitor. Inflammatory cytokines levels tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1β were analyzed and oxidative stress levels were detected by the analysis of reactive oxygen species, malondialdehyde, and superoxide dismutase levels, followed by the analysis of apoptosis levels through terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Cell senescence was evaluated by senescence-associated β-galactosidase and light chain 3 (LC3) levels were detected by immunofluorescence (IF) staining. The targeting relationship of dendrobine and FKBP1A was predicted by SwissTarget, PyMol, Autodock, and Open Babel software. Dendrobine reduced the levels of proinflammation factors, oxidative stress levels, apoptosis levels, and senescence phenotype in ox-LDL-induced HUVECs. Besides, cell viability has an opposite change. Furthermore, there was an increase in LC3 IF tensity, and LC3-II/I and Beclin1 expressions, and a decrease in p62 expression. However, these effects of dendrobine could be markedly destroyed by shRNA silencing FKBP1A and 3MA. Dendrobine can suppress inflammatory responses, oxidative stress, apoptosis, and senescence via FKBP1A-involved autophagy ox-LDL-treated HUVECs.
    Keywords:  FKBP1A; atherosclerosis; autophagy; dendrobine; ox-LDL
  34. Thorac Cancer. 2022 Apr 15.
      BACKGROUND: Radiotherapy is an effective therapeutic approach widely used clinically in non-small cell lung cancer (NSCLC), but radioresistance remains a major challenge. New and effective radiosensitizing approaches are thus urgently needed. The activation of DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has become an attractive therapeutic target, but the relationship between activation of cGAS-STING pathway and radiosensitization of NSCLC cells remains unknown.METHODS: Considering low expression of cGAS-STING pathway genes in NSCLC, including STING, we used an activator (STING agonist, dimeric amidobenzimidazole [diABZI]) of cGAS-STING pathway and increased activation factor (DNA double strand breaks) of cGAS-STING pathway to respectively reinforce the activation of cGAS-STING pathway in NSCLC cells. We then investigated the effect of increased activation of cGAS-STING pathway on the proliferation of H460 and A549 cells by CCK-8 and colony formation assays, and revealed the underlying mechanism.
    RESULTS: We found that both diABZI and the increased DNA double strand breaks could sensitize NSCLC cells to irradiation. Mechanically, our results showed that the increased activation of cGAS-STING pathway enhanced radiosensitivity by promoting apoptosis in NSCLC cells.
    CONCLUSION: Taken together, we concluded that diABZI could be used as a radiosensitizer in NSCLC cells, and targeting the activation of cGAS-STING pathway has a potential to be a new approach for NSCLC radiosensitizing.
    Keywords:  apoptosis; cGAS-STING pathway; diABZI; non-small cell lung cancer; radiosensitivity
  35. J Mol Cell Cardiol. 2022 Apr 11. pii: S0022-2828(22)00068-2. [Epub ahead of print]
      The incidence and prevalence of a wide range of cardiovascular diseases increases as a function of age. This well-established epidemiological relationship suggests that chronological aging might contribute or increase susceptibility to varied conditions such as atherosclerosis, vascular stiffening or heart failure. Here, we explore the mechanistic links that connect both rare and common cardiovascular conditions to the basic biology of aging. These links provide a rational basis to begin to develop a new set of therapeutics targeting the fundamental mechanisms underlying the aging process and suggest that in the near future, age itself might become a modifiable cardiovascular risk factor.
    Keywords:  Aging; Epigenetics; Mitochondria; Mitophagy; Senescence
  36. Brain Behav Immun. 2022 Apr 12. pii: S0889-1591(22)00103-9. [Epub ahead of print]
      Recent progress on the central lymphatic system has greatly increased our understanding of how the brain maintains its own waste homeostasis. Here, we showed that perivascular spaces, meningeal lymphatic vessels and deep cervical lymph nodes form a functional route for clearance of senescent astrocytes from the aging brain. Blocking meningeal lymphatic drainage by ligation of the deep cervical lymph nodes impaired clearance of senescent astrocytes from brain parenchyma, subsequently increasing neuroinflammation in aged mice. By contrast, enhancing meningeal lymphatic vessel diameter by a recombinant adeno-associated virus encoding mouse vascular endothelial growth factor-C (VEGF-C) improved clearance of senescent astrocytes and mitigated neuroinflammation. Mechanistically, VEGF-C was highly expressed in senescent astrocytes, contributing themselves to migrate across lymphatic vessels along C-C motif chemokine ligand 21 (CCL21) gradient by interacting with VEGF receptor 3. Moreover, intra-cisternal injection of antibody against CCL21 hampered senescent astrocytes into the lymphatic vessels and exacerbated short memory defects of aged mice. Together, these findings reveal a new perspective for the meningeal lymphatics in the removal of senescent astrocytes, thus offering a valuable target for therapeutic intervention.
    Keywords:  Meningeal lymphatic vessels; Senescent astrocytes; VEGF-C/CCL21 pathway
  37. Biochem Biophys Res Commun. 2022 Apr 01. pii: S0006-291X(22)00501-0. [Epub ahead of print]609 93-99
      Osteoarthritis occurs when the number of senescent chondrocytes in the joints reaches an intolerable level. The purpose of our study was to explore the therapeutic effect and mechanism of action of A-1331852 in osteoarthritis. Doxorubicin and etoposide were used to induce cell senescence as determined by the cessation of cell proliferation, augmented senescence-associated beta-galactosidase (SA-β-Gal) staining, and increased p53 expression levels. The CCK-8 cytotoxicity assay and SA-β-Gal staining demonstrated that Bcl-xL inhibitors could selectively remove senescent chondrocytes without damaging healthy chondrocytes. A-1331852 induced caspase-dependent death of senescent chondrocytes with decreased mitochondrial membrane potential, nuclear concentration, plasma membrane rupture, and PARP cleavage. Most importantly, A-1331852 upregulated BAK expression levels, indicating that BAK plays a key role in the A-1331852-induced apoptosis of senescent chondrocytes. Live-cell fluorescence resonance energy transfer showed that A-1331852 detached the binding of Bcl-xL to BAK and promoted the oligomerization of BAK on the mitochondrial membrane. In conclusion, this study provides the first evidence that A-1331852 selectively promotes apoptosis in senescent chondrocytes by interfering with the interaction between Bcl-xL and BAK.
    Keywords:  A-1331852; Apoptosis; BAK; Bcl-xL; Osteoarthritis; Senescence
  38. J Neurosci. 2022 Apr 06. pii: JN-RM-2458-21. [Epub ahead of print]
      Cognitive deficits are a major biomedical challenge - and engagement of the brain in stimulating tasks improves cognition in aged individuals (Wilson et al., 2002; Gates et al., 2011) and rodents (Aidil-Carvalho et al., 2017), through unknown mechanisms. Whether cognitive stimulation alters specific metabolic pathways in the brain is unknown. Understanding which metabolic processes are involved in cognitive stimulation is important because it could lead to pharmacologic intervention that promotes biologic effects of a beneficial behavior, toward the goal of effective medical treatments for cognitive deficits. Here we show using male mice that cognitive stimulation induced metabolic remodeling of the mouse hippocampus - and that pharmacologic treatment with the longevity hormone α-klotho (KL), mediated by its KL1 domain, partially mimicked this alteration. The shared, metabolic signature shared between cognitive stimulation and treatment with KL or KL1 closely correlated with individual mouse cognitive performance, indicating a link between metabolite levels and learning and memory. Importantly, treatment of mice with KL1, an endogenous circulating factor that more closely mimicked cognitive stimulation than KL, acutely increased synaptic plasticity, a substrate of cognition. KL1 also improved cognition, itself, in young mice and countered deficits in old mice. Our data show that treatments or interventions mimicking the hippocampal metabolome of cognitive stimulation can enhance brain functions. Further, we identify the specific domain by which klotho promotes brain functions, through KL1, a close metabolic mimic of cognitive stimulation.SIGNIFICANCE STATEMENTCognitive deficits are a major biomedical challenge without truly effective pharmacologic treatments. Engaging the brain through cognitive tasks benefits cognition. Mimicking effects of such beneficial behaviors through pharmacological treatment represents a highly valuable medical approach to treating cognition. We demonstrate that brain engagement through cognitive stimulation induces metabolic remodeling of the hippocampus that was acutely recapitulated by the longevity factor klotho, mediated by its KL1 domain. Treatment with KL1, a close mimic of cognitive stimulation, enhanced cognition and countered cognitive aging. Our findings shed light on how cognition metabolically alters the brain - and provide a plausible therapeutic intervention for mimicking these alterations, that in turn, improves cognition in the young and aging brain.
  39. Development. 2022 Apr 14. pii: dev.200361. [Epub ahead of print]
      The ectopic expression of transcription factors Oct4, Sox2, Klf4 and Myc (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues at the intermediate states of reprogramming upregulate the expression of NK activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly improved by depletion of NK cells. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting the generation of cells with progenitor properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and this concept may apply to other contexts of transient cellular plasticity.
    Keywords:  Natural killer cells; Organoids; Pancreas; Plasticity; Pluripotency; Reprogramming
  40. EMBO J. 2022 Apr 12. e109390
      Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.
    Keywords:  DGAT1; iron; lipid droplet; metabolism; mitophagy