bims-senagi Biomed News
on Senescence and aging
Issue of 2021‒05‒16
twenty-one papers selected by
Maria Grazia Vizioli
Mayo Clinic

  1. Nature. 2021 May 12.
      Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.
  2. Exp Gerontol. 2021 May 06. pii: S0531-5565(21)00176-5. [Epub ahead of print]150 111394
      Skin aging is a complex process and involves extrinsic and intrinsic processes with distinct characteristics. Understanding skin aging requires knowledge of the senescence of human dermal fibroblasts (HDFs) and the biological mechanisms involved in this process. However, the molecular mechanism responsible for the aging of HDFs is still not clear. Therefore, we investigated mechanisms of autophagy, inflammation, and cellular senescence by Western blotting, immunofluorescence, real-time PCR, and senescence-associated β-galactosidase (SA-β-gal) staining in senescent HDFs. We found SRT1720 inhibited the inductions of inflammatory cytokines and cellular senescence by deacetylating acetyl-NF-κB levels and enhancing levels of autophagy-associated proteins and SIRT1 in senescent HDFs. However, the NF-κB activator prostratin attenuated signals associated with autophagy, such as those of LC3-II and Beclin-1, but increased inflammatory cytokine levels and cellular senescence. Notably, the expression levels of SIRT1 and autophagy-associated proteins were higher in aged mice administered SRT1720 than in old mice, and SRT1720 also decreased levels of acetyl-NF-κB, inflammatory cytokines, and senescence markers, which was in accord with in vitro results. These findings support that SRT1720 acts as an anti-aging agent and inhibits the inductions of inflammatory cytokines and senescence by regulating the SIRT1/acetyl-NF-κB signaling pathway and activating autophagy in senescent HDFs.
    Keywords:  Acetyl-NF-κB; Autophagy; Human dermal fibroblasts; Inflammatory cytokines; SIRT1; Senescence
  3. Elife. 2021 May 14. pii: e62233. [Epub ahead of print]10
      Age-related changes to histone levels are seen in many species. However, it is unclear whether changes to histone expression could be exploited to ameliorate the effects of ageing in multicellular organisms. Here we show that inhibition of mTORC1 by the lifespan-extending drug rapamycin increases expression of histones H3 and H4 post-transcriptionally, through eIF3-mediated translation. Elevated expression of H3/H4 in intestinal enterocytes in Drosophila alters chromatin organization, induces intestinal autophagy through transcriptional regulation, prevents age-related decline in the intestine. Importantly, it also mediates rapamycin-induced longevity and intestinal health. Histones H3/H4 regulate expression of an autophagy cargo adaptor Bchs (WDFY3 in mammals), increased expression of which in enterocytes mediates increased H3/H4-dependent healthy longevity. In mice, rapamycin treatment increases expression of histone proteins and Wdfy3 transcription, and alters chromatin organisation in the small intestine, suggesting the mTORC1-histone axis is at least partially conserved in mammals and may offer new targets for anti-ageing interventions.
    Keywords:  D. melanogaster; cell biology; chromosomes; gene expression; mouse
  4. Free Radic Biol Med. 2021 May 11. pii: S0891-5849(21)00284-7. [Epub ahead of print]
      Cellular senescence is a heterogeneous process guided by genetic, epigenetic and environmental factors, characterizing many types of somatic cells. It has been suggested as an aging hallmark that is believed to contribute to aging and chronic diseases. Senescent cells (SC) exhibit a specific senescence-associated secretory phenotype (SASP), mainly characterized by the production of proinflammatory and matrix-degrading molecules. When SC accumulate, a chronic, systemic, low-grade inflammation, known as inflammaging, is induced. In turn, this chronic immune system activation results in reduced SC clearance thus establishing a vicious circle that fuels inflammaging. SC accumulation represents a causal factor for various age-related pathologies. Targeting of several aging hallmarks has been suggested as a strategy to ameliorate healthspan and possibly lifespan. Consequently, SC and SASP are viewed as potential therapeutic targets either through the selective killing of SC or the selective SASP blockage, through natural or synthetic compounds. These compounds are members of a family of agents called senotherapeutics divided into senolytics and senomorphics. Few of them are already in clinical trials, possibly representing a future treatment of age-related pathologies including diseases such as atherosclerosis, osteoarthritis, osteoporosis, cancer, diabetes, neurodegenerative diseases such as Alzheimer's disease, cardiovascular diseases, hepatic steatosis, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and age-related macular degeneration. In this review, we present the already identified senolytics and senomorphics focusing on their redox-sensitive properties. We describe the studies that revealed their effects on cellular senescence and enabled their nomination as novel anti-aging agents. We refer to the senolytics that are already in clinical trials and we present various adverse effects exhibited by senotherapeutics so far. Finally, we discuss aspects of the senotherapeutics that need improvement and we suggest the design of future senotherapeutics to target specific redox-regulated signaling pathways implicated either in the regulation of SASP or in the elimination of SC.
    Keywords:  age-related diseases; aging; cellular senescence; natural compounds; senescence-associated secretory phenotype (SASP); senolytics; senomorphics
  5. Genome Biol. 2021 May 10. 22(1): 129
      BACKGROUND: Cellular senescence is a permanent state of replicative arrest defined by a specific pattern of gene expression. The epigenome in senescent cells is sculptured in order to sustain the new transcriptional requirements, particularly at enhancers and super-enhancers. How these distal regulatory elements are dynamically modulated is not completely defined.RESULTS: Enhancer regions are defined by the presence of H3K27 acetylation marks, which can be modulated by class IIa HDACs, as part of multi-protein complexes. Here, we explore the regulation of class IIa HDACs in different models of senescence. We find that HDAC4 is polyubiquitylated and degraded during all types of senescence and it selectively binds and monitors H3K27ac levels at specific enhancers and super-enhancers that supervise the senescent transcriptome. Frequently, these HDAC4-modulated elements are also monitored by AP-1/p300. The deletion of HDAC4 in transformed cells which have bypassed oncogene-induced senescence is coupled to the re-appearance of senescence and the execution of the AP-1/p300 epigenetic program.
    CONCLUSIONS: Overall, our manuscript highlights a role of HDAC4 as an epigenetic reader and controller of enhancers and super-enhancers that supervise the senescence program. More generally, we unveil an epigenetic checkpoint that has important consequences in aging and cancer.
    Keywords:  AP-1; BRD4; Class IIa HDACs; H3K27; H3K4me1; HDAC4; OIS; SASP; Senescence; Super-enhancers; p300
  6. Dev Comp Immunol. 2021 May 08. pii: S0145-305X(21)00132-4. [Epub ahead of print] 104124
      DNA damage-induced cellular senescence is involved in aging. We reported previously that p53+/- mice subjected to irradiation at a young age exhibited an increased number of splenic lymphocytes in the S and G2/M phases. However, the detailed nature of splenic disorders in these mice is not fully understood. In this study, we investigated the effects on molecules in splenocytes, especially on senescence factors after early exposure of mice to radiation. Mice, 8- (young) or 17-, 30-, and 41-week-old (old) p53+/- were subjected to 3-Gy whole-body irradiation. Splenocytes were prepared at 56 weeks of age. Immunoblot showed that irradiation at 8 weeks enhanced the expression and phosphorylation of p53, cyclin-dependent kinase 2, cell division cycle 6, and the MDM2 proto-oncogene in splenocytes. However, these molecules were not affected by irradiation at 17, 30, and 41 weeks of age. Similarly, irradiation at 8, but not 17, 30, or 41 weeks, induced phosphorylation of IKKα, NF-κB inhibitor alpha, and p65. Electrophoretic mobility shift assay demonstrated that active forms of NF-κB were increased. In addition, enzyme-linked immunosorbent assay showed that lipopolysaccharide-induced IL-6 production was enhanced in splenocytes of mice irradiated at 8 weeks. ATP levels were increased in splenocytes of mice irradiated at 8, but not 17, 30, or 41 weeks. CDK2 expression and p65 phosphorylation were induced in CD45R/B220+ cells from irradiated mice. Overall, irradiation induced a NF-κB-related immune response in the spleen with an increase in senescence marker proteins, such as CDKs and IL-6, which are known to be typical senescence-associated secretory phenotype factors related to stresses, such as DNA damage.
    Keywords:  CDK2; NF-κB; SASP; irradiation; senescence; splenocyte
  7. Brain Res Bull. 2021 May 05. pii: S0361-9230(21)00130-1. [Epub ahead of print]172 203-211
      Autophagy is a highly regulated intracellular process for the degradation of protein aggregates and damaged organelles. Recently, autophagy has been implicated in Alzheimer's disease (AD) and aging. Autophagy process is regulated by the recruitment and assembly of several autophagy-related genes (Atgs) such as, Atg7 and LC3, as the highly conserved and important markers involved in the regulation of autophagy. We recently reported the reduced LC3-II/LC3-I ratio, down-regulated ATG7, and increased p62 protein levels in hippocampal tissues of aging rats. MicroRNA-130a (miR-130a) plays a crucial role in physiological and pathological processes, but whether miR-130a affects the autophagy of brain is unknown. We aim to explore the regulatory role of miR-130a on the autophagy and cell senescence of SH-SY5Y, as well as LC3-II/LC3-I ratio, and the expression of p62, ATG7, Ac-p53 and p21 during exercise intervention of aging rats. In this study, miR-130a expression was markedly down-regulated in the hippocampal of aged rats companying with up-regulated expression of Ac-p53 and p21 when compared with young rats. In contrast, voluntary wheel running could up-regulate miR-130a expression; decrease the expression of Ac-p53 and p21 in aging rats. Interestingly, exercise reversed the impaired autophagy resulted from aging possibly by activating AMPK signaling. Moreover, overexpression of miR-130a in d-galactose (D-gal)-induced SH-SY5Y cell senescence model attenuated d-gal-induced impaired autophagy and cell senescence, demonstrated by decreased levels of LC3, Ac-p53, p21 and increased p62, suggesting that voluntary wheel running can alleviate brain aging in natural aging rats by up-regulating miR-130a-mediated autophagy.
    Keywords:  Autophagy; Brain aging; Voluntary wheel-running exercise; miR-130a
  8. Front Pharmacol. 2021 ;12 653940
      A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
    Keywords:  diabetic wound; inflammation; innate immunity; senescence; wound healing
  9. Exp Gerontol. 2021 May 10. pii: S0531-5565(21)00185-6. [Epub ahead of print] 111403
      Renal fibrosis plays a crucial role in the progression of chronic kidney disease and end-stage renal disease. However, because the aetiology of this pathological process is complex and remains unclear, there is still no effective treatment. Cellular senescence and the senescence-associated secretory phenotype (SASP) have been reported to lead to renal fibrosis. This review first discusses the relationships among cellular senescence, the SASP and renal fibrosis. Then, the key role of the SASP in irreversible renal fibrosis, including fibroblast activation and abnormal extracellular matrix accumulation, is discussed, with the results of studies having indicated that inhibiting cellular senescence and the SASP might be a potential preventive and therapeutic strategy for renal fibrosis. Finally, we summarize promising therapeutic strategies revealed by existing research on senescent cells and the SASP, including emerging interventions targeting the SASP, caloric restriction and mimetics, and novel regeneration therapies with stem cells.
    Keywords:  Cellular senescence; Renal fibrosis; Senescence-associated secretory phenotype; Treatments
  10. Nat Immunol. 2021 May 13.
      The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
  11. Oncol Lett. 2021 Jul;22(1): 496
      The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
    Keywords:  p53; pRb. senescent biomarker; treatment; tumor cell senescence
  12. Acta Neuropathol Commun. 2021 May 08. 9(1): 82
      Mild traumatic brain injury (mTBI) results in broad neurological symptoms and an increased risk of being diagnosed with a neurodegenerative disease later in life. While the immediate oxidative stress response and post-mortem pathology of the injured brain has been well studied, it remains unclear how early pathogenic changes may drive persistent symptoms and confer susceptibility to neurodegeneration. In this study we have used a mouse model of repeated mTBI (rmTBI) to identify early gene expression changes at 24 h or 7 days post-injury (7 dpi). At 24 h post-injury, gene expression of rmTBI mice shows activation of the DNA damage response (DDR) towards double strand DNA breaks, altered calcium and cell-cell signalling, and inhibition of cell death pathways. By 7 dpi, rmTBI mice had a gene expression signature consistent with induction of cellular senescence, activation of neurodegenerative processes, and inhibition of the DDR. At both timepoints gliosis, microgliosis, and axonal damage were evident in the absence of any gross lesion, and by 7 dpi rmTBI also mice had elevated levels of IL1β, p21, 53BP1, DNA2, and p53, supportive of DNA damage-induced cellular senescence. These gene expression changes reflect establishment of processes usually linked to brain aging and suggests that cellular senescence occurs early and most likely prior to the accumulation of toxic proteins. These molecular changes were accompanied by spatial learning and memory deficits in the Morris water maze. To conclude, we have identified DNA damage-induced cellular senescence as a repercussion of repeated mild traumatic brain injury which correlates with cognitive impairment. Pathways involved in senescence may represent viable treatment targets of post-concussive syndrome. Senescence has been proposed to promote neurodegeneration and appears as an effective target to prevent long-term complications of mTBI, such as chronic traumatic encephalopathy and other related neurodegenerative pathologies.
    Keywords:  Ageing; Concussion; DNA damage response; Neurodegeneration; Neuroinflammation; Senescence; Traumatic brain injury
  13. Aging (Albany NY). 2021 May 12. 13
      Aging is a universal biological process characterized by a progressive deterioration in functional capacity and an increased risk of morbidity and mortality over time. In the lungs, there are considerable changes in lung structure and function with advancing age; however, research on the transcriptomic profile implicated in this process is scanty. In this study, we addressed the lung transcriptome changes during aging, through a global gene expression analysis of normal lungs of mice aged 4- and 18-months old. Functional pathway enrichment analysis by Ingenuity Pathway Analysis (IPA) revealed that the most enriched signaling pathways in aged mice lungs are involved in the regulation of cell apoptosis, senescence, development, oxidative stress, and inflammation. We also found 25 miRNAs significantly different in the lungs of old mice compared with their younger littermates, eight of them upregulated and 17 downregulated. Using the miRNet database we identified TNFα, mTOR, TGFβ, WNT, FoxO, Apoptosis, Cell cycle, and p53 signaling pathways as the potential targets of several of the dysregulated miRNAs supporting that old lungs have increased susceptibility for apoptosis, inflammation, and fibrosis. These findings reveal differential expression profiles of genes and miRNAs affecting cell survival and the inflammatory response during lung aging.
    Keywords:  aging lung; inflammaging; lung fibrosis; senescence
  14. Mech Ageing Dev. 2021 May 11. pii: S0047-6374(21)00071-3. [Epub ahead of print] 111499
      The decline of nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of aging in multiple organisms and tissues, including the human brain. Hence, agents that increase intracellular NAD + could have beneficial effects in aging and age-related neurodegenerative diseases. Disturbances in NAD + metabolism have also been observed in Parkinson's disease (PD), supporting a link between neuronal bioenergetics failure and disease pathogenesis. Here, we review emerging findings revealing key roles for NAD + and related metabolites in experimental models of dopaminergic neurodegeneration and in PD patients. We discuss how increased NAD + levels might ameliorate disease phenotypes by restoring neuronal mitochondrial energy metabolism, promoting cellular proteostasis, and modulating the immune system. Finally, we describe ongoing clinical trials targeting NAD + in PD and highlight the need for further investigations to better delineate the association between NAD+, brain aging and disease, and optimal strategies for efficiently and safely raising NAD + levels. A more comprehensive understanding of the basic mechanisms linking NAD+, energy metabolism, and PD, and of the impact of life-long NAD + targeting strategies, are critical to inform future clinical applications.
    Keywords:  NAD+; Parkinson's disease; aging; energy metabolism; mitochondria
  15. Front Cell Dev Biol. 2021 ;9 665412
      The regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) have laid a sound foundation for their clinical application in various diseases. However, the clinical efficiency of MSC treatments varies depending on certain cell characteristics. Among these, the roles of cell aging or senescence cannot be excluded. Despite their stemness, evidence of senescence in MSCs has recently gained attention. Many factors may contribute to the senescence of MSCs, including MSC origin (biological niche), donor conditions (age, obesity, diseases, or unknown factors), and culture conditions in vitro. With the rapidly increasing prevalence of diabetes mellitus (DM) and gestational diabetes mellitus (GDM), the effects of hyperglycemia on the senescence of MSCs should be evaluated to improve the application of autologous MSCs. This review aims to present the available data on the senescence of MSCs, its relationship with hyperglycemia, and the strategies to suppress the senescence of MSCs in a hyperglycemic environment.
    Keywords:  diabetes mettitus; hyperglycemia; mesenchymal stem cells; mitochondrial dysfunction; senescence
  16. Sci Rep. 2021 May 10. 11(1): 9853
      Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.
  17. Front Immunol. 2021 ;12 660560
      The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.
    Keywords:  DNA damage responses; DNA-PK; IFI16; cGAS-STING; cytosolic nucleic acids; inflammation; tumorigenesis
  18. Biochem Biophys Res Commun. 2021 May 11. pii: S0006-291X(21)00758-0. [Epub ahead of print]560 146-151
      Adenosine triphosphate (ATP) is the most vital energy source produced mainly in the mitochondria. Age-related mitochondrial dysfunction is associated with brain diseases. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for energy production in mitochondria. Here, we examined how the novel NAD+-assisting substance, 10-ethyl-3-methylpyrimido[4,5-b]quinoline-2,4(3H,10H)-dione (TND1128), modulates the morphological growth of cultured mouse hippocampal neurons. The morphological growth effect of TND1128 was also compared with that of β-nicotinamide mononucleotide (β-NMN). TND1128 induced the branching of axons and dendrites, and increased the number of excitatory synapses. This study provides new insight into TND1128 as a mitochondria-stimulating drug for improving brain function.
    Keywords:  Axon; Dendrite; Development; Mitochondria; Synapse
  19. Nat Commun. 2021 May 11. 12(1): 2665
      With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.
  20. Aging Cell. 2021 May 09. e13377
      Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD) and aging individuals. It has been established that vascular calcification is a gene-regulated biological process resembling osteogenesis involving osteogenic differentiation. However, there is no efficient treatment available for vascular calcification so far. The natural polyamine spermidine has been demonstrated to increase life span and protect against cardiovascular disease. It is unclear whether spermidine supplementation inhibits vascular calcification in CKD. Alizarin red staining and quantification of calcium content showed that spermidine treatment markedly reduced mineral deposition in both rat and human vascular smooth muscle cells (VSMCs) under osteogenic conditions. Additionally, western blot analysis revealed that spermidine treatment inhibited osteogenic differentiation of rat and human VSMCs. Moreover, spermidine treatment remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in rats with CKD. Furthermore, treatment with spermidine induced the upregulation of Sirtuin 1 (SIRT1) in VSMCs and resulted in the downregulation of endoplasmic reticulum (ER) stress signaling components, such as activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP). Both pharmacological inhibition of SIRT1 by SIRT1 inhibitor EX527 and knockdown of SIRT1 by siRNA markedly blocked the inhibitory effect of spermidine on VSMC calcification. Consistently, EX527 abrogated the inhibitory effect of spermidine on aortic calcification in CKD rats. We for the first time demonstrate that spermidine alleviates vascular calcification in CKD by upregulating SIRT1 and inhibiting ER stress, and this may develop a promising therapeutic treatment to ameliorate vascular calcification in CKD.
    Keywords:  SIRT1; aging; chronic kidney disease; endoplasmic reticulum stress; spermidine; vascular calcification
  21. Nat Commun. 2021 May 11. 12(1): 2715
      Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing.