bims-rimeca Biomed News
on RNA methylation in cancer
Issue of 2021‒04‒04
ten papers selected by
Sk Ramiz Islam
Saha Institute of Nuclear Physics

  1. Front Oncol. 2021 ;11 598017
      Accumulating evidence has proven that N6-methyladenosine (m6A) RNA methylation plays an essential role in tumorigenesis. However, the significance of m6A RNA methylation modulators in the malignant progression of papillary renal cell carcinoma (PRCC) and their impact on prognosis has not been fully analyzed. The present research set out to explore the roles of 17 m6A RNA methylation regulators in tumor microenvironment (TME) of PRCC and identify the prognostic values of m6A RNA methylation regulators in patients afflicted by PRCC. We investigated the different expression patterns of the m6A RNA methylation regulators between PRCC tumor samples and normal tissues, and systematically explored the association of the expression patterns of these genes with TME cell-infiltrating characteristics. Additionally, we used LASSO regression to construct a risk signature based upon the m6A RNA methylation modulators. Two-gene prognostic risk model including IGF2BP3 and HNRNPC was constructed and could predict overall survival (OS) of PRCC patients from the Cancer Genome Atlas (TCGA) dataset. The prognostic signature-based risk score was identified as an independent prognostic indicator in Cox regression analysis. Moreover, we predicted the three most significant small molecule drugs that potentially inhibit PRCC. Taken together, our study revealed that m6A RNA methylation regulators might play a significant role in the initiation and progression of PRCC. The results might provide novel insight into exploration of m6A RNA modification in PRCC and provide essential guidance for therapeutic strategies.
    Keywords:  epigenetic modification; m6A RNA methylation; prognostic signature; renal papillary cell carcinoma; tumor microenvironment
  2. Cancer Res. 2021 Apr 01. pii: canres.3779.2020. [Epub ahead of print]
      The roles of RNA modification during organ metastasis of cancer cells are not known. Here we established breast cancer (BC) lung metastasis cells by three rounds of selection of lung metastatic subpopulations in vivo and designated them BCLMF3 cells. In these cells, mRNA N6-methyladenosine (m6A) and methyltransferase METTL3 were increased, while the demethylase FTO was decreased. Epi-transcriptome and transcriptome analyses together with functional studies identified keratin 7 (KRT7) as a key effector for m6A-induced BC lung metastasis. Specifically, increased METTL3 methylated KRT7-AS at A877 to increase the stability of a KRT7-AS/KRT7 mRNA duplex via IGF2BP1/HuR complexes. Furthermore, YTHDF1/eEF-1 was involved in FTO-regulated translational elongation of KRT7 mRNA, with methylated A950 in KRT7 exon 6 as the key site for methylation. In vivo and clinical studies confirmed the essential roles of KRT7, KRT7-AS, and METTL3 for lung metastasis and clinical progression of breast cancer. Collectively, m6A promotes BC lung metastasis by increasing the stability of a KRT7-AS/KRT7 mRNA duplex and translation of KRT7.
  3. Front Cell Dev Biol. 2021 ;9 647702
      Objectives: N6-methyladenosine (m6A) RNA methylation is implicated in the progression of multiple cancers via influencing mRNA modification. YTHDF1 can act as an oncogene in gastric cancer (GC), while the biological mechanisms via which YTHDF1 regulates gastric tumorigenesis through m6A modification remain largely unknown.Methods: GEO and TCGA cohorts were analyzed for differentially expressed m6A modification components in GC clinical specimens and their association with clinical prognosis. Transwell and flow cytometry assays as well as subcutaneous xenograft and lung metastasis models were used to evaluate the phenotype of YTHDF1 in GC. Intersection of RNA/MeRIP-seq, luciferase assay, RIP-PCR, RNA pull-down and MeRIP-PCR was used to identify YTHDF1- modified USP14 and its m6A levels in GC cells.
    Results: High-expressed YTHDF1 was found in GC tissues and was related to poor prognosis, acting as an independent prognostic factor of poor survival in GC patients. YTHDF1 deficiency inhibited cell proliferation and invasion (in vitro), and gastric tumorigenesis and lung metastasis (in vivo) and also induced cell apoptosis. Intersection assays revealed that YTHDF1 promoted USP14 protein translation in an m6A-dependent manner. USP14 upregulation was positively correlated with YTHDF1 expression and indicated a poor prognosis in GC.
    Conclusion: Our data suggested that m6A reader YTHDF1 facilitated tumorigenesis and metastasis of GC by promoting USP14 protein translation in an m6A-dependent manner and might provide a potential target for GC treatment.
    Keywords:  N6-methyladenosine; USP14; YTHDF1; gastric cancer; metastasis; tumorigenesis
  4. J Hematol Oncol. 2021 Apr 01. 14(1): 54
      N6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.
    Keywords:  AKT3; HNRNPA2B1; ILF3; M6A; MeRIP-Seq; Multiple myeloma; RIP-seq; RNA stability
  5. Nat Cell Biol. 2021 Apr 01.
      Methyltransferase-like 3 (METTL3) and 14 (METTL14) are core subunits of the methyltransferase complex that catalyses messenger RNA N6-methyladenosine (m6A) modification. Despite the expanding list of m6A-dependent functions of the methyltransferase complex, the m6A-independent function of the METTL3 and METTL14 complex remains poorly understood. Here we show that genome-wide redistribution of METTL3 and METTL14 transcriptionally drives the senescence-associated secretory phenotype (SASP) in an m6A-independent manner. METTL14 is redistributed to the enhancers, whereas METTL3 is localized to the pre-existing NF-κB sites within the promoters of SASP genes during senescence. METTL3 and METTL14 are necessary for SASP. However, SASP is not regulated by m6A mRNA modification. METTL3 and METTL14 are required for both the tumour-promoting and immune-surveillance functions of senescent cells, which are mediated by SASP in vivo in mouse models. In summary, our results report an m6A-independent function of the METTL3 and METTL14 complex in transcriptionally promoting SASP during senescence.
  6. FASEB J. 2021 May;35(5): e21465
      N6 -methyladenosine (m6A) methylation is the most prevalent RNA modification, and it emerges as an important regulatory mechanism of gene expression involved in many cellular and biological processes. However, the role of m6 A methylation in vascular development is not clear. The m6 A RNA methylation is regulated by dynamic interplay among methyltransferases, binding proteins, and demethylases. Mettl3 is a member of the mettl3-mettl14 methyltransferase complex, referred to as writers that catalyze m6A RNA methylation. Here, we used CRISPR-Cas9 genome editing to develop two lines of knockout (KO) zebrafish for mettl3. Heterozygous mettl3+/- KO embryos show defective vascular development, which is directly visible in fli-EGFP and flk-EGFP zebrafish. Alkaline phosphatase staining and whole mount in situ hybridization with cdh5, and flk markers demonstrated defective development of intersegmental vessels (ISVs), subintestinal vessels (SIVs), interconnecting vessels (ICVs) and dorsal longitudinal anastomotic vessels (DLAV) in both heterozygous mettl3+/- and homozygous mettl3-/- KO zebrafish embryos. Similar phenotypes were observed in zebrafish embryos with morpholino knockdown (KD) of mettl3; however, the vascular defects were rescued fully by overexpression of constitutively active AKT1. KD of METTL3 in human endothelial cells inhibited cell proliferation, migration, and capillary tube formation. Mechanistically, mettl3 KO and KD significantly reduced the levels of m6 A RNA methylation, and AKT phosphorylation (S473) by an increase in the expression of phosphatase enzyme PHLPP2 and reduction in the phosphorylation of mTOR (S2481), a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases. These data suggest that m6 A RNA methylation regulates vascular development via PHLPP2/mTOR-AKT signaling.
    Keywords:   mettl3 ; PHLPP2; m6A methylation; mTOR-AKT; vascular development; zebrafish
  7. Clin Transl Med. 2021 Mar;11(3): e352
      BACKGROUND: S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown.METHODS: HCC samples were applied to detect AMD1 expression and evaluate its associations with clinicopathological features and prognosis. Subcutaneous and orthotopic tumor mouse models were constructed to analyze the proliferation and metastasis of HCC cells after AMD1 knockdown or overexpression. Drug sensitive and tumor sphere assay were performed to investigate the effect of AMD1 on HCC cells stemness. Real-time quantitative PCR (qRT-PCR), western blot, immunohistochemical (IHC) and m6A-RNA immunoprecipitation (Me-RIP) sequencing/qPCR were applied to explore the potential mechanisms of AMD1 in HCC. Furthermore, immunofluorescence, co-IP (Co-IP) assays, and mass spectrometric (MS) analyses were performed to verify the proteins interacting with AMD1.
    RESULTS: AMD1 was enriched in human HCC tissues and suggested a poor prognosis. High AMD1 level could promote SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and NANOG expression of HCC cells through obesity-associated protein (FTO)-mediated mRNA demethylation. Mechanistically, high AMD1 expression increased the levels of SPD in HCC cells, which could modify the scaffold protein, Ras GTPase-activating-like protein 1 (IQGAP1) and enhance the interaction between IQGAP1 and FTO. This interaction could enhance the phosphorylation and decrease the ubiquitination of FTO.
    CONCLUSIONS: AMD1 could stabilize the interaction of IQGAP1 with FTO, which then promotes FTO expression and increases HCC stemness. AMD1 shows prospects as a prognostic predictor and a therapeutic target for HCC.
    Keywords:  AMD1; FTO; IQGAP1; N6-methyladenosine; hepatocellular carcinoma; polyamination; stemness
  8. Free Radic Biol Med. 2021 Mar 27. pii: S0891-5849(21)00183-0. [Epub ahead of print]
      The m6A reader YT521-B homology containing 2 (YTHDC2) has been identified to inhibit lung adenocarcinoma (LUAD) tumorigenesis by suppressing solute carrier 7A11 (SLC7A11)-dependent antioxidant function. SLC7A11 is a major functional subunit of system XC-. Inhibition of system XC- can induce ferroptosis. However, whether suppressing SLC7A11 is sufficient for YTHDC2 to be an endogenous ferroptosis inducer in LUAD is unknown. Here, we found that induction of YTHDC2 to a high level can induce ferroptosis in LUAD cells but not in lung and bronchus epithelial cells. In addition to SLC7A11, solute carrier 3A2 (SLC3A2), another subunit of system XC- was equally important for YTHDC2-induced ferroptosis. YTHDC2 m6A-dependently destabilized Homeo box A13 (HOXA13) mRNA because a potential m6A recognition site was identified within its 3' untranslated region (3'UTR). Interestingly, HOXA13 acted as a transcription factor to stimulate SLC3A2 expression. Thereby, YTHDC2 suppressed SLC3A2 via inhibiting HOXA13 in an m6A-indirect manner. Mouse experiments further confirmed the associations among YTHDC2, SLC3A2 and HOXA13, and demonstrated that SLC3A2 and SLC7A11 were both important for YTHDC2-impaired tumor growth and -induced lipid peroxidation in vivo. Moreover, higher expression of SLC7A11, SLC3A2 and HOXA13 indicate poorer clinical outcome in YTHDC2-suppressed LUAD patients. In conclusion, YTHDC2 is believed to be a powerful endogenous ferroptosis inducer and targeting SLC3A2 subunit of system XC- is essential for this process. Increasing YTHDC2 is an alternative ferroptosis-based therapy to treat LUAD.
    Keywords:  HOXA13; METTL3; RNA stability; SLC3A2; m(6)A RNA methylation; transcriptional regulation
  9. Int J Mol Sci. 2021 Mar 14. pii: 2941. [Epub ahead of print]22(6):
      Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5'tRNA-derived stress-induced RNAs (5'tiRNAs), namely 5'tiRNA-GlyGCC and 5'tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.
    Keywords:  TRMT2A; angiogenin; methyltransferase; tRNA hypomethylation; tRNA-derived small RNAs; tRNA-derived stress-induced RNAs; tRNA-modifying enzyme; tRNAs
  10. Cancers (Basel). 2021 Mar 09. pii: 1167. [Epub ahead of print]13(5):
      The two RNA modifications 2'-O-methylation and pseudouridylation occur on several RNA species including ribosomal RNAs leading to an increased translation as well as cell proliferation associated with distinct functions. Using malignant melanoma (MM) as a model system the proteins mediating these RNA modifications were for the first time analyzed by different bioinformatics tools and public available databases regarding their expression and histological localization. Next to this, the impact of these RNA-modifying factors on prognostic relevant processes and marker genes of malignant melanoma was investigated and correlated to immune surveillance and evasion strategies. The RNA modifying factors exerted statistically significant positive correlations to the expression of genes involved in cell proliferation and were statistically significant negative correlated to the expression of human leukocyte antigen class I genes as well as of components of the antigen processing machinery in malignant melanoma. Upregulation of the RNA modifying proteins was of prognostic relevance in this tumor disease with a negative impact on the overall survival of melanoma patients. Furthermore, the expression of known oncogenic miRs, which are induced in malignant melanoma, directly correlated to the expression of factors involved in these two RNA modifications.
    Keywords:  2′-O-methylation; malignant melanoma; microRNA; pseudouridylation; snoRNA