bims-resufa Biomed News
on Respiratory supercomplex factors
Issue of 2019‒04‒28
four papers selected by
Vera Strogolova
Marquette University

  1. Cells. 2019 Apr 23. pii: E367. [Epub ahead of print]8(4):
    Carrasco M, Salazar C, Tiznado W, Ruiz LM.
      Autistic Spectrum Disorder (ASD) is characterized by the impairment of socio-communicative skills and the presence of restricted and stereotyped behavior patterns. Recent researches have revealed the influence of mitochondrial physiology on the development of ASD. Several research groups have identified defects in respiratory complexes, coenzyme-Q10 deficiency, increased oxidative damage, decreased of superoxide dismutase (SOD2). A study on the influence of mitochondrial physiology on the development of ASD can provide new alternatives and challenges. That is why we set ourselves the general objective to initiate studies of mitochondrial physiology in Chilean children with ASD. A sample of oral mucosa was collected in a group of 12 children diagnosed with ASD and 12 children without ASD. In children with ASD, we found a significant increase in mitochondrial DNA levels. Likewise, in these children, an increase in the protein oxidation was observed. Finally, a downward trend in the expression of the HIGD2A and SOD2 genes was observed, while DRP1, FIS1, MFN1, MFN2, and OPA1 gene expression show an upward trend. The increment of mitochondrial DNA, high oxidative stress, and high expression of the MFN2 gene could help as a scanner of the mitochondrial function in children with ASD.
    Keywords:  ASD; autism; gene expression; mitochondrial DNA; oral mucosa; oxidative stress
  2. Mol Cell. 2019 Apr 13. pii: S1097-2765(19)30235-7. [Epub ahead of print]
    Balsa E, Soustek MS, Thomas A, Cogliati S, García-Poyatos C, Martín-García E, Jedrychowski M, Gygi SP, Enriquez JA, Puigserver P.
      Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.
    Keywords:  ATF4; ER stress; PERK; hexosamine pathway; mitochondria; mitochondrial cristae; mitochondrial diseases; nutrient stress; protein glycosylation; respiratory chain supercomplexes
  3. Proc Natl Acad Sci U S A. 2019 Apr 26. pii: 201820364. [Epub ahead of print]
    Stoldt S, Stephan T, Jans DC, Brüser C, Lange F, Keller-Findeisen J, Riedel D, Hell SW, Jakobs S.
      Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria.
    Keywords:  FIB-SEM; MICOS; mitochondria; mitoskeleton; nanoscopy
  4. Acc Chem Res. 2019 Apr 25.
    Koutsoupakis C, Soulimane T, Varotsis C.
      Cytochrome c oxidase (C cO) couples the oxidation of cytochrome c to the reduction of molecular oxygen to water and links these electron transfers to proton translocation. The redox-driven C cO conserves part of the released free energy generating a proton motive force that leads to the synthesis of the main biological energy source ATP. Cytochrome ba3 oxidase is a B-type oxidase from the extremely thermophilic eubacterium Thermus thermophilus with high O2 affinity, expressed under elevated temperatures and limited oxygen supply and possessing discrete structural, ligand binding, and electron transfer properties. The origin and the cause of the peculiar, as compared to other C cOs, thermodynamic and kinetic properties remain unknown. Fourier transform infrared (FTIR) and time-resolved step-scan FTIR (TRS2-FTIR) spectroscopies have been employed to investigate the origin of the binding and electron transfer properties of cytochrome ba3 oxidase in both the fully reduced (FR) and mixed valence (MV) forms. Several independent and not easily separated factors leading to increased thermostability and high O2 affinity have been determined. These include (i) the increased hydrophobicity of the active center, (ii) the existence of a ligand input channel, (iii) the high affinity of CuB for exogenous ligands, (iv) the optimized electron transfer (ET) pathways, (v) the effective proton-input channel and water-exit pathway as well the proton-loading/exit sites, (vi) the specifically engineered protein structure, and (vii) the subtle thermodynamic and kinetic regulation. We correlate the unique ligand binding and electron transfer properties of cytochrome ba3 oxidase with the existence of an adaption mechanism which is necessary for efficient function. These results suggest that a cascade of structural factors have been optimized by evolution, through protein architecture, to ensure the conversion of cytochrome ba3 oxidase into a high O2-affinity enzyme that functions effectively in its extreme native environment. The present results show that ba3-cytochrome c oxidase uses a unique structural pattern of energy conversion that has taken into account all the extreme environmental factors that affect the function of the enzyme and is assembled in such a way that its exclusive functions are secured. Based on the available data of CcOs, we propose possible factors including the rigidity and nonpolar hydrophobic interactions that contribute to the behavior observed in cytochrome ba3 oxidase.