bims-reprim Biomed News
on Reproductive immunology
Issue of 2021‒08‒22
seven papers selected by
Iva Filipovic
Karolinska Institutet


  1. Am J Reprod Immunol. 2021 Aug 19.
      PROBLEM: Mucosal-Associated Invariant T (MAIT) cells have been recently identified at the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in pregnancy remains poorly understood.METHOD OF STUDY: We employed a multiomic approach to address this question. Mononuclear cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. In a separate study, both decidual and matched peripheral MAIT cells were analyzed using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene expression analysis. Lastly, decidual MAIT cells were stimulated with E.coli and expression of MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function.
    RESULTS: First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, coupled with scRNA-seq gene expression analysis, highlighted transcriptional programming differences between decidual and matched peripheral MAIT cells at a single cell resolution. Transcription factor expression analysis further highlighted transcriptional differences between decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are skewed towards IFNγ and TNFα production upon stimulation, with E.coli leading to IFNγ production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT cells, is expressed by decidual APCs.
    CONCLUSION: MAIT cells are present in the decidua basalis and obtain a unique gene expression profile. The presence of MR1 on APCs coupled with in vitro activation by E.coli suggests that MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface. This article is protected by copyright. All rights reserved.
    Keywords:  CITE-seq; Decidua Basalis; Decidua Parietalis; MAIT cells; MR1; scRNA-seq
    DOI:  https://doi.org/10.1111/aji.13495
  2. Clin Transl Immunology. 2021 ;10(8): e1328
      Objectives: Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune-associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF.Methods: This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune-associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T-cell subsets were analysed by flow cytometry.
    Results: A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA-DR were unchanged. Dimensionality-reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM-CSF, G-CSF, IL-6, IL-21, TNF and VEGF.
    Conclusion: Intralipid infusion elicited elevated pro-inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro-tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo-controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.
    Keywords:  T cells; cytokines; embryo implantation; infertility; lipid emulsion; uterus
    DOI:  https://doi.org/10.1002/cti2.1328
  3. Sci Rep. 2021 Aug 16. 11(1): 16569
      Maternal immune adaptation to accommodate pregnancy depends on sufficient availability of regulatory T (Treg) cells to enable embryo implantation. Toll-like receptor 4 is implicated as a key upstream driver of a controlled inflammatory response, elicited by signals in male partner seminal fluid, to initiate expansion of the maternal Treg cell pool after mating. Here, we report that mice with null mutation in Tlr4 (Tlr4-/-) exhibit impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate, elevated mid-gestation fetal loss, and fetal growth restriction, compared to Tlr4+/+ wild-type controls. To investigate the effects of TLR4 deficiency on early events of maternal immune adaptation, TLR4-regulated cytokines and immune regulatory microRNAs were measured in the uterus at 8 h post-mating by qPCR, and Treg cells in uterus-draining lymph nodes were evaluated by flow cytometry on day 3.5 post-coitum. Ptgs2 encoding prostaglandin-endoperoxide synthase 2, cytokines Csf2, Il6, Lif, and Tnf, chemokines Ccl2, Cxcl1, Cxcl2, and Cxcl10, and microRNAs miR-155, miR-146a, and miR-223 were induced by mating in wild-type mice, but not, or to a lesser extent, in Tlr4-/- mice. CD4+ T cells were expanded after mating in Tlr4+/+ but not Tlr4-/- mice, with failure to expand peripheral CD25+FOXP3+ NRP1- or thymic CD25+FOXP3+ NRP1+ Treg cell populations, and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. We conclude that TLR4 is an essential mediator of the inflammation-like response in the pre-implantation uterus that induces generation of Treg cells to support robust pregnancy tolerance and ensure optimal fetal growth and survival.
    DOI:  https://doi.org/10.1038/s41598-021-95213-1
  4. Mol Reprod Dev. 2021 Aug 18.
      Ovarian stimulation is associated with a higher risk of low birth weight. However, the precise mechanisms by which ovarian stimulation increases the chances of low birth weight remain unclear. In this mouse model study, in vivo developed blastocysts that were not exposed to gonadotropins were transferred into pseudopregnant females that had mated naturally (the control group), pseudopregnant females that had been administered a low dose of ovulation-stimulating hormone (the L-SO group) and pseudopregnant females that had been administered a high dose of ovulation-stimulating hormone (the H-SO group). The embryo implantation rate and fetal weight were significantly lower in the L-SO and H-SO groups than in the control group. The density of Dolichos biflorus agglutinin (DBA)+ uterine natural killer (uNK) cells in the decidua basalis was significantly lower in the L-SO and H-SO groups than in the control group. Ovarian stimulation also downregulated a variety of cytokines related to uNK cells that are involved in placental angiogenesis and trophoblast invasion. Collectively, our findings indicate that ovarian stimulation impairs DBA+ uNK cell density in the decidua basalis, which may downregulate uNK-related cytokine secretion and influence placental angiogenesis and restrict fetal growth in mice.
    Keywords:  decidual tissue; fetal growth; ovarian stimulation; placental angiogenesis; uterine natural killer (uNK)cells
    DOI:  https://doi.org/10.1002/mrd.23528
  5. mBio. 2021 Aug 17. e0184921
      Pregnant women are highly susceptible to infection by the bacterial pathogen Listeria monocytogenes, leading to miscarriage, premature birth, and neonatal infection. L. monocytogenes is thought to breach the placental barrier by infecting trophoblasts at the maternal/fetal interface. However, the fate of L. monocytogenes within chorionic villi and how infection reaches the fetus are unsettled. Hofbauer cells (HBCs) are fetal placental macrophages and the only leukocytes residing in healthy chorionic villi, forming a last immune barrier protecting fetal blood from infection. Little is known about the HBCs' antimicrobial responses to pathogens. Here, we studied L. monocytogenes interaction with human primary HBCs. Remarkably, despite their M2 anti-inflammatory phenotype at basal state, HBCs phagocytose and kill non-pathogenic bacteria like Listeria innocua and display low susceptibility to infection by L. monocytogenes. However, L. monocytogenes can exploit HBCs to spread to surrounding placental cells. Transcriptomic analyses by RNA sequencing revealed that HBCs undergo pro-inflammatory reprogramming upon L. monocytogenes infection, similarly to macrophages stimulated by the potent M1-polarizing agents lipopolysaccharide (LPS)/interferon gamma (IFN-γ). Infected HBCs also express pro-inflammatory chemokines known to promote placental infiltration by maternal leukocytes. However, HBCs maintain the expression of a collection of tolerogenic genes and secretion of tolerogenic cytokines, consistent with their tissue homeostatic role in prevention of fetal rejection. In conclusion, we propose a previously unrecognized model in which HBCs promote the spreading of L. monocytogenes among placental cells and transition to a pro-inflammatory state likely to favor innate immune responses, while maintaining the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity. IMPORTANCE Infection of the placental/fetal unit by the facultative intracellular pathogen Listeria monocytogenes results in severe pregnancy complications. Hofbauer cells (HBCs) are fetal macrophages that play homeostatic anti-inflammatory functions in healthy placentas. HBCs are located in chorionic villi between the two cell barriers that protect fetal blood from infection: trophoblast cells at the maternal interface (in contact with maternal blood), and fetal endothelial cells at the fetal interface (in contact with fetal blood). As the only leukocytes residing in chorionic villi, HBCs form a critical immune barrier protecting the fetus from infection. Here, we show that although HBCs display low susceptibility to L. monocytogenes, the bacterium still replicates intracellularly and can spread to other placental and fetal cells. We propose that HBCs are permissive to L. monocytogenes transplacental propagation and can repolarize toward a pro-inflammatory phenotype upon infection. However, consistent with their placental homeostatic functions, repolarized HBCs maintain the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity, at least at early stages of infection.
    Keywords:  Hofbauer cells; Listeria monocytogenes; RNA-seq; fetal tolerance; infection; inflammation; macrophage polarization; placenta; transcriptome
    DOI:  https://doi.org/10.1128/mBio.01849-21
  6. J Reprod Immunol. 2021 Jul 29. pii: S0165-0378(21)00090-5. [Epub ahead of print]147 103360
      Preterm birth (PTB) is considered to be one of the most frequent causes of neonatal death. Prompt and effective measures to predict adverse fetal outcome following PTB are urgently needed. Placenta macrophages are a critical immune cell population during pregnancy, phenotypically divided into M1 and M2 subsets. An established mouse model of intrauterine inflammation (IUI) was applied. Placenta (labyrinth) and corresponding fetal brain were harvested within 24 hours post injection (hpi). Flow cytometry, Western blot, real-time qPCR, and regular histology were utilized to examine the cytokines, macrophage polarization, and sex-specificity. Placental exposure to LPS led to significantly reduced labyrinth thickness compared to PBS-exposed controls as early as 3 hpi, accompanied by apoptosis and necrosis. Pro-inflammatory M1 markers, Il-1β, and iNOS, and anti-inflammatory M2 marker Il-10 increased significantly in placentas exposed to IUI. Analysis of flow cytometry revealed that fetal macrophages (Hofbauer cell, HBCs) were mostly M1-like and that maternal inter-labyrinth macrophages (MIM) were M2-like in their features in IUI. Male fetuses displayed significantly decreased M2-like features in HBCs at 3 and 6 hpi, while female fetuses showed significant increase in M2-like features in MIM at 3 and 6 hpi. Furthermore, there was a significant correlation between the frequency of HBCs and corresponding microglial marker expression at 3 and 6 hpi. Placental macrophages demonstrated sex-specific features in response to IUI. Specifically, HBCs may be a potential biomarker for fetal brain injury at preterm birth.
    Keywords:  Plaental; fetal brain injury; intrauterine inflammation; macrophages; microglia; preterm birth
    DOI:  https://doi.org/10.1016/j.jri.2021.103360
  7. Biosci Rep. 2021 Aug 16. pii: BSR20203908. [Epub ahead of print]
      The reproductive tract microbiota plays a crucial role in maintenance of normal pregnancy and influences reproductive outcomes. Microbe-host interactions in pregnancy remain poorly understood and their role in shaping immune modulation is still being uncovered. In this review we describe the composition of vaginal microbial communities in the reproductive tract and their association with reproductive outcomes. We also consider strategies for manipulating microbiota composition by using live biotherapeutics, selective eradication of pathogenic bacteria with antibiotics and vaginal microbiota transplantation. Finally, future developments in this field and the need for mechanistic studies to explore the functional significance of reproductive tract microbial communities are highlighted.
    Keywords:  Microbiota; Pregnancy; Reproduction
    DOI:  https://doi.org/10.1042/BSR20203908