bims-reprim Biomed News
on Reproductive immunology
Issue of 2021‒05‒16
six papers selected by
Iva Filipovic
Karolinska Institutet

  1. Med (N Y). 2021 Apr 30.
      Background: Pregnant women are at increased risk for severe outcomes from coronavirus disease 2019 (COVID-19), but the pathophysiology underlying this increased morbidity and its potential effect on the developing fetus is not well understood.Methods: We assessed placental histology, ACE2 expression, and viral and immune dynamics at the term placenta in pregnant women with and without respiratory severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
    Findings: The majority (13 of 15) of placentas analyzed had no detectable viral RNA. ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term, suggesting that low ACE2 expression may protect the term placenta from viral infection. Using immortalized cell lines and primary isolated placental cells, we found that cytotrophoblasts, the trophoblast stem cells and precursors to syncytiotrophoblasts, rather than syncytiotrophoblasts or Hofbauer cells, are most vulnerable to SARS-CoV-2 infection in vitro. To better understand potential immune mechanisms shielding placental cells from infection in vivo, we performed bulk and single-cell transcriptomics analyses and found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited robust immune responses, including increased activation of natural killer (NK) and T cells, increased expression of interferon-related genes, as well as markers associated with pregnancy complications such as preeclampsia.
    Conclusions: SARS-CoV-2 infection in late pregnancy is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion.
    Funding: NIH (T32GM007205, F30HD093350, K23MH118999, R01AI157488, U01DA040588) and Fast Grant funding support from Emergent Ventures at the Mercatus Center.
    Keywords:  COVID-19; SARS-CoV-2; placenta; pregnancy
  2. Front Immunol. 2021 ;12 651399
      Background: Cord blood (CB) samples are increasingly used as a source of hematopoietic stem cells in transplantation settings. Maternal cells have been detected in CB samples and their presence is associated with a better graft outcome. However, we still do not know what influences the presence of maternal microchimerism (MMc) in CB samples and whether their presence influences CB hematopoietic cell composition.Patients and Methods: Here we test whether genetic, biological, anthropometric and/or obstetrical parameters influence the frequency and/or quantity of maternal Mc in CB samples from 55 healthy primigravid women. Mc was evaluated by targeting non-shared, non-inherited Human Leukocyte Antigen (HLA)-specific real-time quantitative PCR in whole blood and four cell subsets (T, B lymphocytes, granulocytes and/or hematopoietic progenitor cells). Furthermore CB samples were analyzed for their cell composition by flow cytometry and categorized according to their microchimeric status.
    Results: MMc was present in 55% of CB samples in at least one cell subset or whole blood, with levels reaching up to 0.3% of hematopoietic progenitor cells. Two factors were predictive of the presence of MMc in CB samples: high concentrations of maternal serological Pregnancy-Associated-Protein-A at first trimester of pregnancy (p=0.018) and feto-maternal HLA-A and/or -DR compatibility (p=0.009 and p=0.01 respectively). Finally, CB samples positive for MMc were significantly enriched in CD56+ cells compared to CB negative for MMc.
    Conclusions: We have identified two factors, measurable at early pregnancy, predicting the presence of maternal cells in CB samples at delivery. We have shown that MMc in CB samples could have an influence on the hematopoietic composition of fetal cells. CD56 is the phenotypic marker of natural killer cells (NK) and NK cells are known to be the main effector for graft versus leukemia reactions early after hematopoietic stem cell transplantation. These results emphasize the importance of MMc investigation for CB banking strategies.
    Keywords:  HLA compatibility; NK cells; PAPP-A; cord blood; maternal microchimerism; transplantation
  3. Front Immunol. 2021 ;12 657326
      Endometrial cancer is the most common gynecological cancer. To investigate how it suppresses host immune function, we isolated CD8+ T cells from endometrial endometroid carcinomas and adjacent non-cancerous endometrium and determined if the tumor environment regulates cytotoxic capacity. Endometrial carcinomas had increased numbers of CD8+ T cells compared to adjacent non-cancerous endometrium. Tumor CD8+ T cells expressed significantly less granzyme A (GZA), B (GZB), and PD-1 than those in adjacent non-cancerous tissues and also had significantly lower cytotoxic killing of allogeneic target cells. CD103-CD8+ T cells, but not CD103+CD8+ T cells, from both adjacent and tumor tissue were primarily responsible for killing of allogeneic target cells. Secretions recovered from endometrial carcinoma tissues suppressed CD8+ cytotoxic killing and lowered perforin, GZB and PD-1 expression relative to non-tumor CD8+ T cells. Furthermore, tumor secretions contained significantly higher levels of immunosuppressive cytokines including TGFβ than non-tumor tissues. Thus, the tumor microenvironment suppresses cytotoxic killing by CD8+ T cells via the secretion of immunosuppressive cytokines leading to decreased expression of intracellular cytolytic molecules. These studies demonstrate the complexity of CD8+ T cell regulation within the endometrial tumor microenvironment and provide a foundation of information essential for the development of therapeutic strategies for gynecological cancers.
    Keywords:  CD8+ T cells; cytotoxicity; endometrial cancer; granzyme; perforin
  4. Environ Res. 2021 May 06. pii: S0013-9351(21)00582-X. [Epub ahead of print] 111288
      BACKGROUND: Water total trihalomethanes (TTHMs) are disinfectant byproducts found in municipal water supplies. TTHM exposure has been linked to cancer and may be associated with adverse reproductive outcomes. A non-optimal cervicovaginal microbiota and low cervicovaginal beta-defensin-2 levels are associated with increased risk of spontaneous preterm birth. Whether TTHM exposure increases the risk of spontaneous preterm birth or alters the cervicovaginal microbial or immune state is unknown.OBJECTIVE: Investigate associations of water TTHM levels with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and beta-defensin-2 levels in a completed, diverse, urban pregnancy cohort. We hypothesized that higher TTHM levels would be associated with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and lower beta-defensin-2 levels.
    DESIGN: /Methods: This was a secondary analysis of participants (n=474) in the Motherhood & Microbiome (M&M) study (n=2000), who lived in Philadelphia and had cervicovaginal samples analyzed for cervicovaginal microbiota composition and beta-defensin-2 levels. The microbiota was classified into community state types (CSTs). CST IV (non-optimal microbiota) is characterized by a paucity of Lactobacillus species and wide array of anaerobes. Municipal water TTHM levels were obtained from 16 sites monthly across the city of Philadelphia to establish mean residential water supply levels for each participant for the first four months of pregnancy (prior to vaginal swab collection at 16-20 weeks' gestation). Associations of water TTHM levels with spontaneous preterm birth and a non-optimal cervicovaginal microbiota birth were analyzed using multivariable logistic regression. Multivariable linear regression was used to model associations of water TTHM levels with log-transformed cervicovaginal beta-defensin-2 levels. Since water TTHM levels vary by season and Beta-defensin-2 levels have been shown to differ by race, stratified models by warm (April-September) and cold (October-March) seasons as well as by self-identified race were utilized.
    RESULTS: Participants' water supply TTHM levels (mean μg/L [SD]) were higher in the warm (53.5 [9.4]) than cold (33.4 [7.5]) season (p<0.0001). TTHM levels were non-significantly higher among Black participants than non-Black participants (44.8[13.5] vs. 41.8[11.8], p=0.07). No associations were detected between TTHM with spontaneous preterm birth (per SD increment of TTHM, aOR 0.94, 95%CI: 0.66, 1.34) or with CST IV (aOR 0.94, 95%CI: 0.86, 1.16). Counter to our hypothesis, we observed positive associations of water TTHM with log-transformed cervicovaginal beta-defensin-2 levels in unadjusted models (β 0.20 [95%CI: 0.02, 0.39)] per SD increment of TTHM), but the association was null after adjustment for season. However, in models adjusted for covariates including season and stratified by race, TTHM was significantly associated with lower beta-defensin-2 levels among non-Black participants (β -0.75 [95%CI: -1.43, -0.08]) but not among Black participants (β 0.17 [95%CI: -0.15, 0.49]), interaction p=0.013).
    CONCLUSION: We did not detect associations of water TTHM levels with spontaneous preterm birth or the structure of the cervicovaginal microbiota. However, the finding of a significant interaction between TTHM and race on beta-defensin-2 levels suggest that environmental exposures may contribute to differences in reproductive tract innate immune function by race. Future studies to delineate environmental contributions to the cervicovaginal microbial-immune state, a potentially important biologic underpinning for preterm birth, are warranted.
    Keywords:  Total Trihalomethane(s); Trihalomethane(s); beta-defensin; microbiome; preterm birth
  5. Commun Biol. 2021 May 14. 4(1): 572
      Seminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.
  6. Nat Commun. 2021 May 11. 12(1): 2639
      The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( ).