bims-reprim Biomed News
on Reproductive immunology
Issue of 2020‒12‒27
two papers selected by
Iva Filipovic
Karolinska Institutet


  1. Hum Reprod. 2020 Dec 21. pii: deaa367. [Epub ahead of print]
    Shende P, Gaikwad P, Gandhewar M, Ukey P, Bhide A, Patel V, Bhagat S, Bhor V, Mahale S, Gajbhiye R, Modi D.
      Coronavirus disease 2019 (COVID-19) is caused by infection of the respiratory tract by SARS-CoV-2 which survives in the tissues during the clinical course of infection but there is limited evidence on placental infection and vertical transmission of SARS-CoV-2. The impact of COVID-19 in first trimester pregnancy remains poorly understood. Moreover, how long SARS-CoV-2 can survive in placenta is unknown. Herein we report a case of a pregnant woman in the first trimester who tested positive for SARS-CoV-2 at 8 weeks of gestation although her clinical course was asymptomatic. At 13 weeks of gestation, her throat swab tested negative for SARS-CoV-2 but viral RNA was detected in the placenta and the Spike (S) proteins (S1 and S2) were immunolocalized in cytotrophoblast and syncytiotrophoblast cells of the placental villi. Histologically, the villi were generally avascular with peri-villus fibrin deposition and in some areas the syncytiotrophoblast layer appeared lysed. The decidua also had fibrin deposition with extensive leucocyte infiltration suggestive of inflammation. The SARS-CoV-2 crossed the placental barrier, as the viral RNA was detected in the amniotic fluid and the S proteins were detected in the fetal membrane. Ultrasonography revealed extensively subcutaneous edema with pleural effusion suggestive of hydrops fetalis and the absence of cardiac activity indicated fetal demise. This is the first study to provide concrete evidence of persistent placental infection of SARS-CoV-2 and its congenital transmission associated with hydrops fetalis and intrauterine fetal demise in early pregnancy.
    Keywords:  COVID-19; Virus; abortion; congenital; coronavirus; fetal membrane; hydrops fetalis; placenta; pregnancy; vertical transmission
    DOI:  https://doi.org/10.1093/humrep/deaa367
  2. JAMA Netw Open. 2020 Dec 01. 3(12): e2030455
    Edlow AG, Li JZ, Collier AY, Atyeo C, James KE, Boatin AA, Gray KJ, Bordt EA, Shook LL, Yonker LM, Fasano A, Diouf K, Croul N, Devane S, Yockey LJ, Lima R, Shui J, Matute JD, Lerou PH, Akinwunmi BO, Schmidt A, Feldman J, Hauser BM, Caradonna TM, De la Flor D, D'Avino P, Regan J, Corry H, Coxen K, Fajnzylber J, Pepin D, Seaman MS, Barouch DH, Walker BD, Yu XG, Kaimal AJ, Roberts DJ, Alter G.
      Importance: Biological data are lacking with respect to risk of vertical transmission and mechanisms of fetoplacental protection in maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.Objective: To quantify SARS-CoV-2 viral load in maternal and neonatal biofluids, transplacental passage of anti-SARS-CoV-2 antibody, and incidence of fetoplacental infection.
    Design, Setting, and Participants: This cohort study was conducted among pregnant women presenting for care at 3 tertiary care centers in Boston, Massachusetts. Women with reverse transcription-polymerase chain reaction (RT-PCR) results positive for SARS-CoV-2 were recruited from April 2 to June 13, 2020, and follow-up occurred through July 10, 2020. Contemporaneous participants without SARS-CoV-2 infection were enrolled as a convenience sample from pregnant women with RT-PCR results negative for SARS-CoV-2.
    Exposures: SARS-CoV-2 infection in pregnancy, defined by nasopharyngeal swab RT-PCR.
    Main Outcomes and Measures: The main outcomes were SARS-CoV-2 viral load in maternal plasma or respiratory fluids and umbilical cord plasma, quantification of anti-SARS-CoV-2 antibodies in maternal and cord plasma, and presence of SARS-CoV-2 RNA in the placenta.
    Results: Among 127 pregnant women enrolled, 64 with RT-PCR results positive for SARS-CoV-2 (mean [SD] age, 31.6 [5.6] years) and 63 with RT-PCR results negative for SARS-CoV-2 (mean [SD] age, 33.9 [5.4] years) provided samples for analysis. Of women with SARS-CoV-2 infection, 23 (36%) were asymptomatic, 22 (34%) had mild disease, 7 (11%) had moderate disease, 10 (16%) had severe disease, and 2 (3%) had critical disease. In viral load analyses among 107 women, there was no detectable viremia in maternal or cord blood and no evidence of vertical transmission. Among 77 neonates tested in whom SARS-CoV-2 antibodies were quantified in cord blood, 1 had detectable immunoglobuilin M to nucleocapsid. Among 88 placentas tested, SARS-CoV-2 RNA was not detected in any. In antibody analyses among 37 women with SARS-CoV-2 infection, anti-receptor binding domain immunoglobin G was detected in 24 women (65%) and anti-nucleocapsid was detected in 26 women (70%). Mother-to-neonate transfer of anti-SARS-CoV-2 antibodies was significantly lower than transfer of anti-influenza hemagglutinin A antibodies (mean [SD] cord-to-maternal ratio: anti-receptor binding domain immunoglobin G, 0.72 [0.57]; anti-nucleocapsid, 0.74 [0.44]; anti-influenza, 1.44 [0.80]; P < .001). Nonoverlapping placental expression of SARS-CoV-2 receptors angiotensin-converting enzyme 2 and transmembrane serine protease 2 was noted.
    Conclusions and Relevance: In this cohort study, there was no evidence of placental infection or definitive vertical transmission of SARS-CoV-2. Transplacental transfer of anti-SARS-CoV-2 antibodies was inefficient. Lack of viremia and reduced coexpression and colocalization of placental angiotensin-converting enzyme 2 and transmembrane serine protease 2 may serve as protective mechanisms against vertical transmission.
    DOI:  https://doi.org/10.1001/jamanetworkopen.2020.30455