bims-proteo Biomed News
on Proteostasis
Issue of 2022‒09‒18
29 papers selected by
Eric Chevet
INSERM


  1. J Lipid Res. 2022 Sep 10. pii: S0022-2275(22)00112-2. [Epub ahead of print] 100279
      The unfolded protein response (UPR) is an elaborate signaling network that evolved to maintain proteostasis in the endoplasmic reticulum (ER) and mitochondria (mt). These organelles are functionally and physically associated and consequently, their stress responses are often intertwined. It is unclear how these two adaptive stress responses are coordinated during ER stress. The inositol-requiring enzyme-1 (IRE1), a central ER stress sensor and proximal regulator of the UPRER, harbors dual kinase and endoribonuclease (RNase) activities. IRE1 RNase activity initiates the transcriptional layer of the UPRER, but IRE1's kinase substrate(s) and their functions are largely unknown. Here, we discovered that sphingosine 1-phosphate (S1P) lyase (SPL), the enzyme that degrades S1P, is a substrate for the mammalian IRE1 kinase. Our data show that IRE1-dependent SPL phosphorylation inhibits SPL's enzymatic activity, resulting in increased intracellular S1P levels. S1P has previously been shown to induce the activation of mitochondrial UPR (UPRmt) in nematodes. We determined that IRE1 kinase-dependent S1P induction during ER stress potentiates UPRmt signaling in mammalian cells. Phosphorylation of eukaryotic translation initiation factor 2α (eif2α) is recognized as a critical molecular event for UPRmt activation in mammalian cells. Our data further demonstrate that inhibition of the IRE1-SPL axis abrogates the activation of two eif2α kinases, namely double-stranded RNA-activated protein kinase (PKR) and PKR-like ER kinase (PERK) upon ER stress. These findings show that the IRE1-SPL axis plays a central role in coordinating the adaptive responses of both organelles to ER stress in mammalian cells.
    Keywords:  Adaptive Stress Response; Endoplasmic Reticulum; Endoribonuclease; Eukaryotic Translation Initiation Factor 2α; IRE1-SPL axis; Inositol-Requiring Enzyme-1; Kinase; Mitochondria; Proteostasis; Signaling Networks
    DOI:  https://doi.org/10.1016/j.jlr.2022.100279
  2. Adv Protein Chem Struct Biol. 2022 ;pii: S1876-1623(22)00050-5. [Epub ahead of print]132 49-87
      Protein homeostasis or "proteostasis" represent the process that regulates the balance of the intracellular functional and "healthy" proteins. Proteostasis is fundamental to preserve physiological metabolic processes in the cell and it allow to respond to any given stimulus as the expression of components of the proteostasis network is customized according to the proteomic demands of different cellular environments. In conditions that promote unfolding/misfolding of proteins chaperones act as signaling molecules inducing extreme measures to either fix the problem or destroy unfolded proteins. When the chaperone machinery fails under pathological insults unfolded proteins induce the endoplasmic reticulum (ER) stress activating the unfolded protein response (UPR) machinery. The activation of the UPR restores ER proteostasis primarily through the transcriptional remodeling of ER protein folding, trafficking, and degradation pathways, such as the ubiquitin proteasome system (UPS). If these mechanisms do not manage to clear the aberrant proteins, proteasome overload and become defective, and misfolded proteins may form aggregates thus extending the UPR mechanism. These aggregates are then attempted to be cleared by macroautophagy. Impaired proteostasis promote the accumulation of misfolded proteins that exacerbate the damage to chaperones, surveillance systems and/or degradative activities. Remarkably, the removal of toxic misfolded proteins is critical for all cells, but it is especially significant in neurons since these cannot be readily replaced. In neurons, the maintenance of efficient proteostasis is essential to healthy aging since the dysregulation of the proteostasis network can lead to neurodegenerative disease. Each of these brain pathologies is characterized by the repeated misfolding of one of more peculiar proteins, which evade both the protein folding machinery and cellular degradation mechanisms and begins to form aggregates that nucleate out into large fibrillar aggregates. In this chapter we describe the mechanisms, associated with faulty proteostasis, that promote the formation of protein aggregates, amyloid fibrils, intracellular, and extracellular inclusions in the most common nondegenerative disorders also referred to as protein misfolding disorders.
    Keywords:  Alzheimer's disease; Amyotrophic lateral sclerosis; Autophagy; Chaperones; Parkinson's disease; Proteostasis; Ubiquitin proteasome system; Unfolded protein response
    DOI:  https://doi.org/10.1016/bs.apcsb.2022.05.008
  3. Cell Rep. 2022 Sep 13. pii: S2211-1247(22)01177-9. [Epub ahead of print]40(11): 111349
      Macroautophagy is a bulk degradation system in which double membrane-bound structures called autophagosomes to deliver cytosolic materials to lysosomes. Autophagy promotes cellular homeostasis by selectively recognizing and sequestering specific targets, such as damaged organelles, protein aggregates, and invading bacteria, termed selective autophagy. We previously reported a type of selective autophagy, lysophagy, which helps clear damaged lysosomes. Damaged lysosomes become ubiquitinated and recruit autophagic machinery. Proteomic studies using transfection reagent-coated beads and further evaluations reveal that a CUL4A-DDB1-WDFY1 E3 ubiquitin ligase complex is essential to initiate lysophagy and clear damaged lysosomes. Moreover, we show that LAMP2 is ubiquitinated by the CUL4A E3 ligase complex as a substrate on damaged lysosomes. These results reveal how cells selectively tag damaged lysosomes to initiate autophagy for the clearance of lysosomes.
    Keywords:  CP: Molecular biology; CUL4A; LAMP2; autophagy; lysophagy; lysosomal membrane damage; ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2022.111349
  4. FEBS J. 2022 Sep 16.
      Tripartite motif containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling, and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors are recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that colocalize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 Knock-Out cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27 mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 Knock Out cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27 expressing cells, but not in HEK293 FlpIn TRIM27 Knock Out cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.
    DOI:  https://doi.org/10.1111/febs.16628
  5. FEBS Lett. 2022 Sep 14.
      To understand the potential interplay between vesicular trafficking and direct membrane contact sites mediated transport, we selected the endoplasmic reticulum (ER), which participates in both modes of inter-organelle transport. ER-mitochondria encounter structures (ERMES) are direct membrane contact junctions that mediate macromolecule exchange, while the secretory pathway originates at ER exit sites (ERES). Using the budding yeast Pichia pastoris, we documented that ERMES resident proteins are often juxtaposed with ERES markers. We further demonstrated that ERES form de novo almost always near a pre-existing ERMES. Disruption of either ERES or ERMES affects the other. Djp1, a chaperone reported to mediate mitochondrial import of ER-resident proteins, localizes at the ERES-ERMES proximal region. Our results indicate a potential functional link between ERES-ERMES proximity and mitochondrial protein import.
    DOI:  https://doi.org/10.1002/1873-3468.14497
  6. J Cell Biol. 2022 Oct 03. pii: e202205135. [Epub ahead of print]221(10):
      The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
    DOI:  https://doi.org/10.1083/jcb.202205135
  7. Comput Struct Biotechnol J. 2022 ;20 4618-4625
      A complex network of molecular chaperones and proteolytic machinery safeguards the proteins which comprise the proteome, from the time they are synthesized on ribosomes to their destruction via proteolysis. Impaired protein quality control results in the accumulation of aberrant proteins, which may undergo unwanted spurious interactions with other proteins, thereby interfering with a broad range of cellular functions. To protect the cellular environment, such proteins are degraded or sequestered into inclusions in different subcellular compartments. Recent findings demonstrate that aberrant or mistargeted proteins from different cytoplasmic compartments are removed from their environment by transporting them into the nucleus. These proteins are degraded by the nuclear ubiquitin-proteasome system or sequestered into intra-nuclear inclusions. Here, we discuss the emerging role of the nucleus as a cellular quality compartment based on recent findings in the yeast Saccharomyces cerevisiae. We describe the current knowledge on cytoplasmic substrates of nuclear protein quality control, the mechanism of nuclear import of such proteins, as well as possible advantages and risks of nuclear sequestration of aberrant proteins.
    Keywords:  Chaperones; Mitochondria; Nucleus; Protein aggregation; Protein quality control; Ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.csbj.2022.08.033
  8. EMBO J. 2022 Sep 14. e111318
      Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.
    Keywords:  Urm1; oxidative stress; persulfidation; sulfur transfer; ubiquitin-like
    DOI:  https://doi.org/10.15252/embj.2022111318
  9. Autophagy. 2022 Sep 12.
      Conjugation of Atg8-family proteins to phosphatidylethanolamine (PE) is important for autophagosome formation. PE conjugation has been thought to be specific to Atg8 among the ubiquitin-family proteins. However, this dogma has not been experimentally verified. Our recent study revealed that ubiquitin is also conjugated to PE on endosomes and the vacuole (or lysosomes). Other ubiquitin-like proteins, such as NEDD8 and ISG15, also covalently bind to phospholipids. We propose that conjugation to phospholipids could be a common feature of the ubiquitin family.
    Keywords:  Atg8; Doa4; Tul1; endosome; lysosome; phosphatidylethanolamine; phospholipids; ubiquitin; ubiquitin-like proteins; vacuole
    DOI:  https://doi.org/10.1080/15548627.2022.2123637
  10. Biochem J. 2022 Sep 13. pii: BCJ20220401. [Epub ahead of print]
      ADP-heptose activates the protein kinase ALPK1 triggering TIFA phosphorylation at Thr9, the recruitment of TRAF6 and the subsequent production of inflammatory mediators. Here, we demonstrate that ADP-heptose also stimulates the formation of Lys63- and Met1-linked ubiquitin chains to activate the TAK1 and canonical IKK complexes, respectively. We further show that the E3 ligases TRAF6 and c-IAP1 operate redundantly to generate the Lys63-linked ubiquitin chains required for pathway activation, which we demonstrate are attached to TRAF6, TRAF2 and c-IAP1, and that c-IAP1 is recruited to TIFA by TRAF2. ADP-heptose also induces activation of the kinase TBK1 by a TAK1-independent mechanism, which requires TRAF2 and TRAF6. We establish that ALPK1 phosphorylates TIFA directly at Thr177 as well as Thr9 in vitro. Thr177 is located within the TRAF6-binding motif and its mutation to Asp prevents TRAF6 but not TRAF2 binding, indicating a role in restricting ADP-heptose signalling. We conclude that ADP-heptose signalling is controlled by the combined actions of TRAF2/c-IAP1 and TRAF6.
    Keywords:  ADP-heptose; ALPK1; TAK1; TBK1; TIFA; TRAF
    DOI:  https://doi.org/10.1042/BCJ20220401
  11. J Biol Chem. 2022 Sep 12. pii: S0021-9258(22)00927-9. [Epub ahead of print] 102484
      The IL-3, IL-5, and GM-CSF family of cytokines plays an essential role in the growth, differentiation, and effector functions of multiple hematopoietic cell types. Receptors in this family are composed of cytokine-specific α chains and a common β chain (CSF2RB), responsible for the majority of downstream signaling. CSF2RB abundance and stability influence the magnitude of the cellular response to cytokine stimulation, but the exact mechanisms of regulation are not well understood. Here, we use genetic screens in multiple cellular contexts and cytokine conditions to identify STUB1, an E3 ubiquitin ligase, and CHIC2 as regulators of CSF2RB ubiquitination and protein stability. We demonstrate that Stub1 and Chic2 form a complex that binds Csf2rb, and that genetic inactivation of either Stub1 or Chic2 leads to reduced ubiquitination of Csf2rb. The effects of Stub1 and Chic2 on Csf2rb were greatest at reduced cytokine concentrations, suggesting that Stub1/Chic2-mediated regulation of Csf2rb is a mechanism of reducing cell-surface accumulation when cytokine levels are low. Our study uncovers a mechanism of CSF2RB regulation through ubiquitination and lysosomal degradation and describes a role for CHIC2 in the regulation of a cytokine receptor.
    Keywords:  CHIC2; CSF2RB; E3 ubiquitin ligase; GM-CSF; IL-3; IL-5; STUB1; cell-surface receptor; cytokine; cytokine signaling; protein degradation; protein stability; receptor; signaling; ubiquitin; ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.jbc.2022.102484
  12. Structure. 2022 Aug 31. pii: S0969-2126(22)00320-3. [Epub ahead of print]
      The heterodimer of human ubiquitin fusion degradation 1 (hUfd1) and human nuclear protein localization 4 (hNpl4) is a major cofactor of human p97 adenosine triphosphatase (ATPase). The p97-Ufd1-Npl4 complex translocates the ubiquitin-conjugated proteins from the endoplasmic reticulum membrane to the cytoplasm. Ubiquitinated proteins are then degraded by the proteasome. The structures of Npl4 and Ufd1-Npl4 (UN) complex in Saccharomyces cerevisiae have been recently reported; however, the structures of hNpl4 and the human UN complex remain unknown. Here, we report the crystal structures of the human UN complex at a resolution of 2.7 Å and hNpl4 at a resolution of 3.0 Å. We also present atomic details and characterization of the human UN complex. Crystallographic studies and site-directed mutagenesis of the hUfd1 residues involved in the interaction with hNpl4 revealed the atomic details of the two proteins.
    Keywords:  Npl4; Ufd1; endoplasmic reticulum-associated degradation, ERAD; p97; ubiquitin
    DOI:  https://doi.org/10.1016/j.str.2022.08.005
  13. Mol Cell. 2022 Sep 15. pii: S1097-2765(22)00807-3. [Epub ahead of print]82(18): 3424-3437.e8
      Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.
    Keywords:  E3 ubiquitin ligase; cryo-EM; individual ribosomes; mRNA stasis sensing; rRNA decay; ribosomal stalling; ribosome profiling; translational quality control; ubiquitination
    DOI:  https://doi.org/10.1016/j.molcel.2022.08.018
  14. Nat Commun. 2022 Sep 16. 13(1): 5435
      Covalent attachment of ubiquitin (Ub) to proteins is a highly versatile posttranslational modification. Moreover, Ub is not only a modifier but itself is modified by phosphorylation and lysine acetylation. However, the functional consequences of Ub acetylation are poorly understood. By generation and comprehensive characterization of all seven possible mono-acetylated Ub variants, we show that each acetylation site has a particular impact on Ub structure. This is reflected in selective usage of the acetylated variants by different E3 ligases and overlapping but distinct interactomes, linking different acetylated variants to different cellular pathways. Notably, not only electrostatic but also steric effects contribute to acetylation-induced changes in Ub structure and, thus, function. Finally, we provide evidence that p300 acts as a position-specific Ub acetyltransferase and HDAC6 as a general Ub deacetylase. Our findings provide intimate insights into the structural and functional consequences of Ub acetylation and highlight the general importance of Ub acetylation.
    DOI:  https://doi.org/10.1038/s41467-022-33087-1
  15. J Biol Chem. 2022 Sep 09. pii: S0021-9258(22)00919-X. [Epub ahead of print] 102476
      The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3 and pro3-1, are handled by the cell. We show that all three are non-toxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not co-localize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally co-aggregated and co-localized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 co-localized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling electron microscopy both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
    Keywords:  Saccharomyces cerevisiae; chaperone; heat shock; protein aggregation; protein misfolding; proteostasis; spatial protein quality control; yeast
    DOI:  https://doi.org/10.1016/j.jbc.2022.102476
  16. Am J Respir Cell Mol Biol. 2022 Sep 15.
      The gain-of-function minor allele of the MUC5B promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis following bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 and ATF6 co-express with MUC5B in epithelia of the distal IPF airway and honeycomb cyst, and this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single cell RNA sequencing (scRNA-seq) in bleomycin-exposed mice, we found that pathologic ER-stress associated transcripts Atf4 and Ddit3 were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild type mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α, which prevents guanine exchange by Eif2B, and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB), facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4 translation. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice following bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B/Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
    Keywords:  ATF4; ER stress; Fibrosis; IPF; MUC5B
    DOI:  https://doi.org/10.1165/rcmb.2022-0252OC
  17. Life Sci Alliance. 2022 Dec;pii: e202101359. [Epub ahead of print]5(12):
      The founding member of the F-box protein family, Cyclin-F, serves as a substrate adaptor for the E3 ligase Skp1-Cul1-F-box (SCF)Cyclin-F which is responsible for ubiquitination of proteins involved in cell cycle progression, DNA damage and mitotic fidelity. Missense mutations in CCNF encoding for Cyclin-F are associated with amyotrophic lateral sclerosis (ALS). However, it remains elusive whether CCNF mutations affect the substrate adaptor function of Cyclin-F and whether altered SCFCyclin-F-mediated ubiquitination contributes to pathogenesis in CCNF mutation carriers. To address these questions, we set out to identify new SCFCyclin-F targets in neuronal and ALS patient-derived cells. Mass spectrometry-based ubiquitinome profiling of CCNF knockout and mutant cell lines as well as Cyclin-F proximity and interaction proteomics converged on the HSP90 chaperone machinery as new substrate candidate. Biochemical analyses provided evidence for a Cyclin-F-dependent association and ubiquitination of HSP90AB1 and implied a regulatory role that could affect the binding of a number of HSP90 clients and co-factors. Together, our results point to a possible Cyclin-F loss-of-function-mediated chaperone dysregulation that might be relevant for ALS.
    DOI:  https://doi.org/10.26508/lsa.202101359
  18. Nat Commun. 2022 Sep 14. 13(1): 5383
      Adaptive immunity depends on cell surface presentation of antigenic peptides by major histocompatibility complex class I (MHC I) molecules and on stringent ER quality control in the secretory pathway. The chaperone tapasin in conjunction with the oxidoreductase ERp57 is crucial for MHC I assembly and for shaping the epitope repertoire for high immunogenicity. However, how the tapasin-ERp57 complex engages MHC I clients has not yet been determined at atomic detail. Here, we present the 2.7-Å crystal structure of a tapasin-ERp57 heterodimer in complex with peptide-receptive MHC I. Our study unveils molecular details of client recognition by the multichaperone complex and highlights elements indispensable for peptide proofreading. The structure of this transient ER quality control complex provides the mechanistic basis for the selector function of tapasin and showcases how the numerous MHC I allomorphs are chaperoned during peptide loading and editing.
    DOI:  https://doi.org/10.1038/s41467-022-32841-9
  19. Cancer Lett. 2022 Sep 08. pii: S0304-3835(22)00387-1. [Epub ahead of print] 215903
      The mitochondrial folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) has shown oncogenic roles in various cancers and may have non-metabolic functions. This study investigated the role of MTHFD2 in glioblastoma pathogenesis. We find that MTHFD2 expression is enriched in gliomas by analysing public databases and clinical specimens. RNA interference (RNAi) and inhibitor of MTHFD2 hamper the proliferation of glioblastoma and induce apoptosis in cell lines, glioma stem-like cells (GSCs) and patient-derived xenografts (PDX). Metabolomic analyses show that MTHFD2 depletion suppresses the central carbon metabolic pathways, including glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. GSEA reveals a novel non-metabolic function of MTHFD2 in association with the unfolded protein response (UPR). MTHFD2 depletion activates the PERK/eIF2α axis which contributes to translation inhibition and apoptosis; these effects are attenuated by a PERK inhibitor. Mechanistically, MTHFD2 may be linked to UPR via the post-transcriptionally regulation of chaperone protein GRP78. In conclusion, MTHFD2 could be a promising therapeutic target for glioblastoma. Besides its canonical role, MTHFD2 may contribute to glioblastoma pathogenesis via UPR, highlighting a newly identified functional link between one-carbon metabolism and cell stress response.
    Keywords:  ER stress; Metabolic reprogramming; Metabolomics; Non-metabolic; RNA interference
    DOI:  https://doi.org/10.1016/j.canlet.2022.215903
  20. Autophagy. 2022 Sep 12.
      In selective macroautophagy/autophagy, autophagy receptors are key molecules that determine cargo specificity. Most known autophagy receptors only exist in some but not all eukaryotic lineages. The exception is Nbr1 proteins, which are conserved across eukaryotes. The four-tryptophan (FW) domain is the hallmark of Nbr1 proteins, but its function has been unknown. Our recent study found that the FW domain in the Nbr1 protein of the filamentous fungus Chaetomium thermophilum binds the α-mannosidase Ams1, a known selective autophagy cargo in budding yeast and fission yeast. Furthermore, we showed that when C. thermophilum Nbr1 and Ams1 are expressed heterologously in fission yeast, FW domain-mediated binding can promote autophagic delivery of Ams1 into vacuoles. We solved the structure of the FW-Ams1 complex and revealed the structural mechanism underlying Ams1 recognition by the FW domain. The N-terminal di-glycine peptide of Ams1 fits into a conserved pocket of the FW domain. We propose that this cargo-binding mechanism may also be employed by Nbr1 proteins in other eukaryotes.
    Keywords:  Ams1; FW domain; Nbr1; autophagy receptor; selective autophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2123636
  21. PLoS Biol. 2022 Sep;20(9): e3001737
      The nutrient-activated mTORC1 (mechanistic target of rapamycin kinase complex 1) signaling pathway determines cell size by controlling mRNA translation, ribosome biogenesis, protein synthesis, and autophagy. Here, we show that vimentin, a cytoskeletal intermediate filament protein that we have known to be important for wound healing and cancer progression, determines cell size through mTORC1 signaling, an effect that is also manifested at the organism level in mice. This vimentin-mediated regulation is manifested at all levels of mTOR downstream target activation and protein synthesis. We found that vimentin maintains normal cell size by supporting mTORC1 translocation and activation by regulating the activity of amino acid sensing Rag GTPase. We also show that vimentin inhibits the autophagic flux in the absence of growth factors and/or critical nutrients, demonstrating growth factor-independent inhibition of autophagy at the level of mTORC1. Our findings establish that vimentin couples cell size and autophagy through modulating Rag GTPase activity of the mTORC1 signaling pathway.
    DOI:  https://doi.org/10.1371/journal.pbio.3001737
  22. Nat Cell Biol. 2022 Sep;24(9): 1394-1406
      Amino acid availability controls mTORC1 activity via a heterodimeric Rag GTPase complex that functions as a scaffold at the lysosomal surface, bringing together mTORC1 with its activators and effectors. Mammalian cells express four Rag proteins (RagA-D) that form dimers composed of RagA/B bound to RagC/D. Traditionally, the Rag paralogue pairs (RagA/B and RagC/D) are referred to as functionally redundant, with the four dimer combinations used interchangeably in most studies. Here, by using genetically modified cell lines that express single Rag heterodimers, we uncover a Rag dimer code that determines how amino acids regulate mTORC1. First, RagC/D differentially define the substrate specificity downstream of mTORC1, with RagD promoting phosphorylation of its lysosomal substrates TFEB/TFE3, while both Rags are involved in the phosphorylation of non-lysosomal substrates such as S6K. Mechanistically, RagD recruits mTORC1 more potently to lysosomes through increased affinity to the anchoring LAMTOR complex. Furthermore, RagA/B specify the signalling response to amino acid removal, with RagB-expressing cells maintaining lysosomal and active mTORC1 even upon starvation. Overall, our findings reveal key qualitative differences between Rag paralogues in the regulation of mTORC1, and underscore Rag gene duplication and diversification as a potentially impactful event in mammalian evolution.
    DOI:  https://doi.org/10.1038/s41556-022-00976-y
  23. Nucleic Acids Res. 2022 Sep 15. pii: gkac751. [Epub ahead of print]
      Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine-alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
    DOI:  https://doi.org/10.1093/nar/gkac751
  24. Mol Cell. 2022 Sep 09. pii: S1097-2765(22)00812-7. [Epub ahead of print]
      RNA polymerase II (RNA Pol II) subunits are thought to be involved in various transcription-associated processes, but it is unclear whether they play different regulatory roles in modulating gene expression. Here, we performed nascent and mature transcript sequencing after the acute degradation of 12 mammalian RNA Pol II subunits and profiled their genomic binding sites and protein interactomes to dissect their molecular functions. We found that RNA Pol II subunits contribute differently to RNA Pol II cellular localization and transcription processes and preferentially regulate RNA processing (such as RNA splicing and 3' end maturation). Genes sensitive to the depletion of different RNA Pol II subunits tend to be involved in diverse biological functions and show different RNA half-lives. Sequences, associated protein factors, and RNA structures are correlated with RNA Pol II subunit-mediated differential gene expression. These findings collectively suggest that the heterogeneity of RNA Pol II and different genes appear to depend on some of the subunits.
    DOI:  https://doi.org/10.1016/j.molcel.2022.08.023
  25. STAR Protoc. 2022 Sep 08. pii: S2666-1667(22)00542-1. [Epub ahead of print]3(3): 101662
      Aggrephagy is a major way to clear protein aggregates. Here, we describe a pipeline of experiments to find autophagy receptors for aggrephagy. Steps include an in vitro reconstitution to recapitulate autophagosome recognizing aggregates and receptor identification steps based on flow cytometry and mass spectrometry. We also describe functional validation steps based on immunofluorescence and immunoblot. The protocol provides a practical way to identify aggrephagy receptors. For complete details on the use and execution of this protocol, please refer to Ma et al. (2022).
    Keywords:  Cell biology; Flow cytometry/Mass cytometry; Protein biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2022.101662
  26. Elife. 2022 Sep 15. pii: e81083. [Epub ahead of print]11
      A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.
    Keywords:  cancer biology; cell biology; human; mouse
    DOI:  https://doi.org/10.7554/eLife.81083
  27. EMBO Rep. 2022 Sep 14. e54993
      Macroautophagy/autophagy is a conserved process in eukaryotic cells that mediates the degradation and recycling of intracellular substrates. Proteins encoded by autophagy-related (ATG) genes are essentially involved in the autophagy process and must be tightly regulated in response to various circumstances, such as nutrient-rich and starvation conditions. However, crucial transcriptional activators of ATG genes have remained obscure. Here, we identify the RNA polymerase II subunit Rpb9 as an essential regulator of autophagy by a high-throughput screen of a Saccharomyces cerevisiae gene knockout library. Rpb9 plays a crucial and specific role in upregulating ATG1 transcription, and its deficiency decreases autophagic activities. Rpb9 promotes ATG1 transcription by binding to its promoter region, which is mediated by Gcn4. Furthermore, the function of Rpb9 in autophagy and its regulation of ATG1/ULK1 transcription are conserved in mammalian cells. Together, our results indicate that Rpb9 specifically activates ATG1 transcription and thus positively regulates the autophagy process.
    Keywords:  ATG1; Rpb9; autophagy; starvation; transcription
    DOI:  https://doi.org/10.15252/embr.202254993
  28. Nat Struct Mol Biol. 2022 Sep 12.
      The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.
    DOI:  https://doi.org/10.1038/s41594-022-00832-5
  29. J Inherit Metab Dis. 2022 Sep 14.
      Congenital disorders of glycosylation are genetic disorders which occur due to defects in protein and lipid glycosylation pathways. A deficiency of N-glycanase 1, encoded by the NGLY1 gene, results in a congenital disorder of deglycosylation. The NGLY1 enzyme is mainly involved in cleaving N-glycans from misfolded, retro-translocated glycoproteins in the cytosol from the endoplasmic reticulum prior to their proteasomal degradation or activation. Despite the essential role of NGLY1 in deglycosylation pathways, the exact consequences of NGLY1 deficiency on global cellular protein glycosylation have not yet been investigated. We undertook a multiplexed tandem mass tags (TMT)-labeling based quantitative glycoproteomics and proteomics analysis of fibroblasts from NGLY1 deficient individuals carrying different biallelic pathogenic variants in NGLY1. This quantitative mass spectrometric analysis detected 8,041 proteins and defined a proteomic signature of differential expression across affected individuals and controls. Proteins that showed significant differential expression included phospholipid phosphatase 3, stromal cell-derived factor 1, collagen alpha-1 (IV) chain, hyaluronan and proteoglycan link protein 1 and thrombospondin-1. We further detected a total of 3,255 N-glycopeptides derived from 550 glycosylation sites of 407 glycoproteins by multiplexed N-glycoproteomics. Several extracellular matrix glycoproteins and adhesion molecules showed altered abundance of N-glycopeptides. Overall, we observed distinct alterations in specific glycoproteins, but our data revealed no global accumulation of glycopeptides in the patient-derived fibroblasts, despite the genetic defect in NGLY1. Our findings highlight new molecular and system-level insights for understanding NGLY1-CDDG. This article is protected by copyright. All rights reserved.
    Keywords:  NGLY1; congenital disorder of deglycosylation; congenital disorder of glycosylation; glycoproteomics; mass spectrometry; proteomics
    DOI:  https://doi.org/10.1002/jimd.12557