bims-proteo Biomed News
on Proteostasis
Issue of 2021‒11‒14
thirty-five papers selected by
Eric Chevet

  1. Life Sci Alliance. 2022 Feb;pii: e202000730. [Epub ahead of print]5(2):
      N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin-independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
  2. Trends Endocrinol Metab. 2021 Dec;pii: S1043-2760(21)00221-6. [Epub ahead of print]32(12): 980-993
      N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
    Keywords:  Alzheimer’s disease; N-linked glycosylation; carbohydrate metabolism; neurodegeneration; neuroinflammation
  3. J Mol Biol. 2021 Nov 09. pii: S0022-2836(21)00584-2. [Epub ahead of print] 167347
      N-degron E3 ubiquitin ligases recognize specific residues at the N-termini of substrates. Although molecular details of N-degron recognition are known for several E3 ligases, the range of N-terminal motifs that can bind a given E3 substrate binding domain remains unclear. Here, we discovered capacity of Gid4 and Gid10 substrate receptor subunits of yeast "GID"/human "CTLH" multiprotein E3 ligases to tightly bind a wide range of N-terminal residues whose recognition is determined in part by the downstream sequence context. Screening of phage displaying peptide libraries with exposed N-termini identified novel consensus motifs with non-Pro N-terminal residues binding Gid4 or Gid10 with high affinity. Structural data reveal that conformations of flexible loops in Gid4 and Gid10 complement sequences and folds of interacting peptides. Together with analysis of endogenous substrate degrons, the data show that degron identity, substrate domains harboring targeted lysines, and varying E3 ligase higher-order assemblies combinatorially determine efficiency of ubiquitylation and degradation.
  4. Biol Direct. 2021 Nov 07. 16(1): 22
      BACKGROUND: Rab32 is a small GTPase associated with multiple organelles but is particularly enriched at the endoplasmic reticulum (ER). Here, it controls targeting to mitochondria-ER contacts (MERCs), thus influencing composition of the mitochondria-associated membrane (MAM). Moreover, Rab32 regulates mitochondrial membrane dynamics via its effector dynamin-related protein 1 (Drp1). Rab32 has also been reported to induce autophagy, an essential pathway targeting intracellular components for their degradation. However, no autophagy-specific effectors have been identified for Rab32. Similarly, the identity of the intracellular membrane targeted by this small GTPase and the type of autophagy it induces are not known yet.RESULTS: To investigate the target of autophagic degradation mediated by Rab32, we tested a large panel of organellar proteins. We found that a subset of MERC proteins, including the thioredoxin-related transmembrane protein TMX1, are specifically targeted for degradation in a Rab32-dependent manner. We also identified the long isoform of reticulon-3 (RTN3L), a known ER-phagy receptor, as a Rab32 effector.
    CONCLUSIONS: Rab32 promotes degradation of mitochondrial-proximal ER membranes through autophagy with the help of RTN3L. We propose to call this type of selective autophagy "MAM-phagy".
    Keywords:  Autophagy; ER-phagy; Mitochondria-associated membrane (MAM); Rab32
  5. Nat Commun. 2021 Nov 08. 12(1): 6447
      During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.
  6. iScience. 2021 Nov 19. 24(11): 103241
      The Linear Ubiquitin Chain Assembly Complex (LUBAC), composed of HOIP, HOIL-1L, and SHARPIN, promotes tumor necrosis factor (TNF)-dependent NF-κB signaling in diverse cell types. HOIL-1L contains an Npl4 Zinc Finger (NZF) domain that specifically recognizes linear ubiquitin chains, but its physiological role in vivo has remained unclear. Here, we demonstrate that the HOIL-1L NZF domain has important regulatory functions in inflammation and immune responses in mice. We generated knockin mice (Hoil-1l T201A;R208A/T201A;R208A ) expressing a HOIL-1L NZF mutant and observed attenuated responses to TNF- and LPS-induced shock, including prolonged survival, stabilized body temperature, reduced cytokine production, and liver damage markers. Cells derived from Hoil-1l T201A;R208A/T201A;R208A mice show reduced TNF-dependent NF-κB activation and incomplete recruitment of HOIL-1L into TNF Receptor (TNFR) Complex I. We further show that HOIL-1L NZF cooperates with SHARPIN to prevent TNFR-dependent skin inflammation. Collectively, our data suggest that linear ubiquitin-chain binding by HOIL-1L regulates immune responses and inflammation in vivo.
    Keywords:  Biological sciences; Immune response; Molecular biology
  7. Mol Cell Proteomics. 2021 Nov 08. pii: S1535-9476(21)00147-X. [Epub ahead of print] 100175
      Protein ubiquitylation is an important post-translational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as non-proteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers. For example, K48-linked ubiquitin chains represent the most abundant chain topology and are the canonical degradation signals, but have been implicated in degradation-independent functions as well, likely requiring a variety of protein readers. Ubiquitin binding domains that interact with polyubiquitin chains are likely at the center of ubiquitin signal recognition and transmission, but their structure and selectivity are largely unexplored. Here we report identification and characterization of the ubiquitin interacting motif like (UIML) domain of the yeast transcription factor Met4 as a strictly K48-polyubiquitin specific binding unit using methods like biolayer interferometry (BLI), pull-down assays and mass spectrometry. We further used the selective binding property to develop an affinity probe for purification of proteins modified with K48-linked polyubiquitin chains. The affinity probe has a Kd= 100nM for K48 tetra-ubiquitin, and shows no detectable interaction with either monoubiquitin or any other polyubiquitin chain configuration. Our results define a short strictly K48-linkage dependent binding motif, and present a new affinity reagent for the K48-polyubiquitin-modified proteome. Our findings benefit the ubiquitin field in analyses of the role of K48-linked polyubiquitylation and increase our understanding of chain topology selective ubiquitin chain recognition.
  8. Elife. 2021 Nov 11. pii: e72798. [Epub ahead of print]10
      UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.
    Keywords:  biochemistry; cell biology; chemical biology; human
  9. Molecules. 2021 Nov 04. pii: 6682. [Epub ahead of print]26(21):
      The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.
    Keywords:  X-ray crystallography; post-translational modification; structural biology; ubiquitin E3 ligase
  10. Front Oncol. 2021 ;11 752604
      Female breast cancer has become the most commonly occurring cancer worldwide. Although it has a good prognosis under early diagnosis and appropriate treatment, breast cancer metastasis drastically causes mortality. The process of metastasis, which includes cell epithelial-mesenchymal transition, invasion, migration, and colonization, is a multistep cascade of molecular events directed by gene mutations and altered protein expressions. Ubiquitin modification of proteins plays a common role in most of the biological processes. E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer cells, including breast cancer metastasis. In this review, we provide an overview of these ligases, summarize the metastatic processes in which E3s are involved, and comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast cancer patients. Finally, we consider how our knowledge can be used for E3s' potency in the therapeutic intervention or prognostic assessment of metastatic breast cancer.
    Keywords:  E3 ligase; breast cancer; metastasis; systematic review; ubiquitination
  11. Traffic. 2021 Nov 11.
      SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A to D) in mammals, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to ER export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.
    Keywords:  COPII; SEC24; collagen; endoplasmic reticulum; secretion; tissue-specificity
  12. Cell Death Differ. 2021 Nov 06.
      The cystine/glutamate antiporter SLC7A11 (commonly known as xCT) functions to import cystine for glutathione biosynthesis, thereby protecting cells from oxidative stress and ferroptosis, a regulated form of non-apoptotic cell death driven by the accumulation of lipid-based reactive oxygen species (ROS). p14ARF, a well-established tumor suppressor, promotes ferroptosis by inhibiting NRF2-mediated SLC7A11 transcription. Here, we demonstrate the crucial role of Cullin 2 RING E3 ligase (CRL2)-KLHDC3 E3 ubiquitin ligase complex in regulating p14ARF protein stability. KLHDC3 acts as a CRL2 adaptor that specifically recognizes a C-terminal degron in p14ARF and triggers p14ARF for ubiquitin-proteasomal degradation. This regulation mode is absent in the murine p14ARF homolog, p19arf which lacks the C-terminal degron. We also show that KLHDC3 suppresses ferroptosis in vitro and supports tumor growth in vivo by relieving p14ARF-mediated suppression of SLC7A11 transcription. Overall, these findings reveal that the protein stability and pro-ferroptotic function of p14ARF are controlled by a CRL2 E3 ubiquitin ligase complex, and suggest that suppression of the p14ARF-NRF2-SLC7A11 regulatory pathway by KLHDC3 overexpression likely contributes to cancer progression.
  13. Nat Commun. 2021 Nov 11. 12(1): 6515
      The post-translational modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) represents one of the most important regulators in eukaryotic biology. Polymeric Ub/Ubl chains of distinct topologies control the activity, stability, interaction and localization of almost all cellular proteins and elicit a variety of biological outputs. Our ability to characterize the roles of distinct Ub/Ubl topologies and to identify enzymes and receptors that create, recognize and remove these modifications is however hampered by the difficulty to prepare them. Here we introduce a modular toolbox (Ubl-tools) that allows the stepwise assembly of Ub/Ubl chains in a flexible and user-defined manner facilitated by orthogonal sortase enzymes. We demonstrate the universality and applicability of Ubl-tools by generating distinctly linked Ub/Ubl hybrid chains, and investigate their role in DNA damage repair. Importantly, Ubl-tools guarantees straightforward access to target proteins, site-specifically modified with distinct homo- and heterotypic (including branched) Ub chains, providing a powerful approach for studying the functional impact of these complex modifications on cellular processes.
  14. Cell Rep. 2021 Nov 09. pii: S2211-1247(21)01466-2. [Epub ahead of print]37(6): 109987
      CENP-A (centromeric protein A), a histone H3 variant, specifies centromere identity and is essential to centromere maintenance. Little is known about how protein levels of CENP-A are controlled in mammalian cells. Here, we report that the phosphorylation of CENP-A Ser68 primes the ubiquitin-proteasome-mediated proteolysis of CENP-A during mitotic phase in human cultured cells. We identify two major polyubiquitination sites that are responsible for this phosphorylation-dependent degradation. Substituting the two residues, Lys49 and Lys124, with arginines abrogates proper CENP-A degradation and results in CENP-A mislocalization to non-centromeric regions. Furthermore, we find that DCAF11 (DDB1 and CUL4 associated factor 11/WDR23) is the E3 ligase that specifically mediates the observed polyubiquitination. Deletion of DCAF11 hampers CENP-A degradation and causes its mislocalization. We conclude that the Ser68 phosphorylation plays an important role in regulating cellular CENP-A homeostasis via DCAF11-mediated degradation to prevent ectopic localization of CENP-A during the cell cycle.
  15. Life Sci Alliance. 2022 Jan;pii: e202101260. [Epub ahead of print]5(1):
      The integrated stress response (ISR) regulates cellular homeostasis and cell survival following exposure to stressors. Cell death processes such as apoptosis and pyroptosis are known to be modulated by stress responses, but the role of the ISR in necroptosis is poorly understood. Necroptosis is an inflammatory, lytic form of cell death driven by the RIPK3-MLKL signaling axis. Here, we show that macrophages that have induced the ISR are protected from subsequent necroptosis. Consistent with a reduction in necroptosis, phosphorylation of RIPK1, RIPK3, and MLKL is reduced in macrophages pre-treated with ISR-inducing agents that are challenged with necroptosis-inducing triggers. The stress granule component DDX3X, which is involved in ISR-mediated regulation of pyroptosis, is not required for protecting ISR-treated cells from necroptosis. Disruption of stress granule assembly or knockdown of Perk restored necroptosis in pre-stressed cells. Together, these findings identify a critical role for the ISR in limiting necroptosis in macrophages.
  16. J Cell Biol. 2022 Jan 03. pii: e202103156. [Epub ahead of print]221(1):
      Mitochondria and peroxisomes are independent but functionally closely related organelles. A few proteins have been characterized as dual-organelle locating proteins with distinct or similar roles on mitochondria and peroxisomes. MARCH5 is a mitochondria-associated ubiquitin ligase best known for its regulatory role in mitochondria quality control, fission, and fusion. Here, we used a proximity tagging system, PUP-IT, and identified new interacting proteins of MARCH5. Our data uncover that MARCH5 is a dual-organelle locating protein that interacts with several peroxisomal proteins. PEX19 binds the transmembrane region on MARCH5 and targets it to peroxisomes. On peroxisomes, MARCH5 binds and mediates the ubiquitination of PMP70. Furthermore, we find PMP70 ubiquitination and pexophagy induced by mTOR inhibition are blocked in the absence of MARCH5. Our study suggests novel roles of MARCH5 on peroxisomes.
  17. Cell Rep. 2021 Nov 09. pii: S2211-1247(21)01467-4. [Epub ahead of print]37(6): 109988
      The anti-apoptotic myeloid cell leukemia 1 (MCL1) protein belongs to the pro-survival BCL2 family and is frequently amplified or elevated in human cancers. MCL1 is highly unstable, with its stability being regulated by phosphorylation and ubiquitination. Here, we identify acetylation as another critical post-translational modification regulating MCL1 protein stability. We demonstrate that the lysine acetyltransferase p300 targets MCL1 at K40 for acetylation, which is counteracted by the deacetylase sirtuin 3 (SIRT3). Mechanistically, acetylation enhances MCL1 interaction with USP9X, resulting in deubiquitination and subsequent MCL1 stabilization. Therefore, ectopic expression of acetylation-mimetic MCL1 promotes apoptosis evasion of cancer cells, enhances colony formation potential, and facilitates xenografted tumor progression. We further demonstrate that elevated MCL1 acetylation sensitizes multiple cancer cells to pharmacological inhibition of USP9X. These findings reveal that acetylation of MCL1 is a critical post-translational modification enhancing its oncogenic function and provide a rationale for developing innovative therapeutic strategies for MCL1-dependent tumors.
    Keywords:  MCL1; USP9X; acetylation; chemoresistance; p300; protein degradation; protein stability; ubiquitination
  18. Cell. 2021 Nov 04. pii: S0092-8674(21)01233-2. [Epub ahead of print]
      The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.
    Keywords:  ATG16L1; Atg8ylation; COVID-19; FIP200; Golgi; SARS-CoV-2; Syntaxin 17; autophagy; coronavirus; endosome
  19. J Biol Chem. 2021 Oct 28. pii: S0021-9258(21)01174-1. [Epub ahead of print] 101368
      The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAM). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, GRP75, is essential in increasing ER-mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER-mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER-mitochondrial interaction leading to apoptosis in pancreatic islet cells.
    Keywords:  ER-mitochondria contact; GRP75; calcium apoptosis; palmitate
  20. iScience. 2021 Nov 19. 24(11): 103296
      Autophagy is a conserved biological process that maintains cell homeostasis by targeting macromolecules for lysosome-mediated degradation. The levels of autophagy are relatively lower under normal conditions than under stress conditions (e.g., starvation), as autophagy is usually stimulated after multiple stresses. However, many autophagy-related regulators are still expressed under normal conditions. Although these regulators have been studied deeply in autophagy regulation, the nonautophagic roles of these regulators under normal conditions remain incompletely understood. Here, we found that autophagy-related 5 (ATG5), which is a key regulator of autophagy, regulates c-Myc protein degradation under normal conditions through the ubiquitin-proteasome pathway. We also found that ATG5 binds c-Myc and recruits the E3 ubiquitin-protein ligase FBW7 to promote c-Myc degradation. Moreover, ATG5-mediated degradation of c-Myc limits cell growth under normal conditions and is essential for embryonic stem cell differentiation. Therefore, this study reveals a nonautophagic role of ATG5 in regulating of c-Myc protein degradation.
    Keywords:  Cell biology; Functional aspects of cell biology
  21. Dev Cell. 2021 Nov 08. pii: S1534-5807(21)00810-8. [Epub ahead of print]56(21): 2928-2937.e9
      Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.
    Keywords:  Shh signaling; eCLIP; limb development; mRNA translation; neural tube specification; ribosome profiling
  22. Cell Death Differ. 2021 Nov 06.
      Ischemic disease is among the deadliest and most disabling illnesses. Prominent examples include myocardial infarction and stroke. Most, if not all, underlying pathological changes, including oxidative stress, inflammation, and nutrient deprivation, are potent inducers of the integrated stress response (ISR). Four upstream kinases are involved in ISR signaling that sense a myriad of input stress signals and converge on the phosphorylation of serine 51 of eukaryotic translation initiation factor 2α (eIF2α). As a result, translation initiation is halted, creating a window of opportunity for the cell to repair itself and restore homeostasis. A growing number of studies show strong induction of the ISR in ischemic disease. Genetic and pharmacological evidence suggests that the ISR plays critical roles in disease initiation and progression. Here, we review the basic regulation of the ISR, particularly in response to ischemia, and summarize recent findings relevant to the actions of the ISR in ischemic disease. We then discuss therapeutic opportunities by modulating the ISR to treat ischemic heart disease, brain ischemia, ischemic liver disease, and ischemic kidney disease. Finally, we propose that the ISR represents a promising therapeutic target for alleviating symptoms of ischemic disease and improving clinical outcomes.
  23. Blood. 2021 Nov 09. pii: blood.2021012055. [Epub ahead of print]
      Although several members of protein disulfide isomerase (PDI) family support thrombosis, other PDI family members with the CXYC motif remain uninvestigated. ERp46 has three CGHC redox-active sites and a radically different molecular architecture than other PDIs. Expression of ERp46 on the platelet surface increased with thrombin stimulation. An anti-ERp46 antibody inhibited platelet aggregation, ATP release, and αIIbβ3 activation. ERp46 protein potentiated αIIbβ3 activation, platelet aggregation and ATP release, while inactive ERp46 inhibited these processes. ERp46-knockout mice had prolonged tail-bleeding times, and decreased platelet accumulation in thrombosis models that was rescued by infusion of ERp46. ERp46-deficient platelets had decreased αIIbβ3 activation, platelet aggregation, ATP release and P-selectin expression. The defects were reversed by wild-type ERp46 and partially reversed by ERp46 containing any of the three active sites. Platelet aggregation stimulated by an αIIbβ3-activating peptide was inhibited by the anti-ERp46 antibody and was decreased in ERp46-deficient platelets. ERp46 bound tightly to αIIbβ3 by surface plasmon resonance but poorly to platelets lacking αIIbβ3, and physically associated with αIIbβ3 upon platelet activation. ERp46 mediated clot retraction and platelet spreading. ERp46 more strongly reduced disulfide bonds in the β3 subunit than other PDIs, and in contrast to PDI generated thiols in β3 independently of fibrinogen. ERp46 cleaved the Cys473-Cys503 disulfide bond in β3 implicating a target for ERp46. Finally, ERp46-deficient platelets have decreased thiols in β3 implying that ERp46 cleaves disulfide bonds in platelets. In conclusion, ERp46 is critical for platelet function and thrombosis and facilitates αIIbβ3 activation by targeting disulfide bonds.
  24. J Cell Sci. 2021 Nov 11. pii: jcs.259107. [Epub ahead of print]
      Protein abnormalities can accelerate aging causing protein misfolding diseases, various adaptive responses have evolved to relieve proteotoxicity. To trigger these responses, cells must detect the buildup of aberrant proteins. Previously we demonstrated that the Hsp70-Bag3 (HB) complex senses the accumulation of defective ribosomal products, stimulating signaling pathways, such as stress kinases or the Hippo pathway kinase LATS1. Here, we studied how Bag3 regulates the ability for LATS1 to regulate its key downstream target YAP. In naïve cells, Bag3 recruited a complex of LATS1, YAP, and the scaffold AmotL2, which links LATS1 and YAP. Upon inhibition of proteasome, AmotL2 dissociated from Bag3, which prevented phosphorylation of YAP by LATS1 and led to consequent nuclear YAP localization together with Bag3. Mutations in Bag3 that enhanced its translocation into nucleus, also facilitated nuclear translocation of YAP. Interestingly, Bag3 also controlled YAP nuclear localization in response to cell density, indicating broader roles beyond proteotoxic signaling responses for Bag3 in the regulation of YAP. These data implicate Bag3 as a regulator of Hippo pathway signaling, and suggest mechanisms by which proteotoxic stress signals are propagated.
    Keywords:  Bag3; Lats1; proteotoxicity
  25. Sci Rep. 2021 Nov 11. 11(1): 22087
      The pollination services provided by the honey bee are critical in both natural and agricultural ecosystems. Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. Defining specific common cellular processes and cellular stress responses impacted by multiple stressors represent a key step in understanding these synergies. Proteotoxic stresses negatively impact protein synthesis, folding, and degradation. Diverse proteotoxic stresses induce expression of genes encoding small heat shock proteins (sHSP) of the expanded lethal (2) essential for life (l(2)efl) gene family. In addition to upregulation by the Integrated Stress Response (ISR), the Heat Shock Response (HSR), and the Oxidative Stress Response (OSR), our data provide first evidence that sHSP genes are upregulated by the Unfolded Protein Response (UPR). As these genes appear to be part of a core stress response that could serve as a useful biomarker for cellular stress in honey bees, we designed and tested an RT-LAMP assay to detect increased l(2)efl gene expression in response to heat-stress. While this assay provides a powerful proof of principle, further work will be necessary to link changes in sHSP gene expression to colony-level outcomes, to adapt our preliminary assay into a Point of Care Testing (POCT) assay appropriate for use as a diagnostic tool for use in the field, and to couple assay results to management recommendations.
  26. mBio. 2021 Nov 09. e0267921
      During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5'-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control. IMPORTANCE The stringent response is a bacterial signaling network that utilizes the nucleotides pppGpp and ppGpp to reprogram cells in order to survive nutritional stresses. However, much about how these important nucleotides control cellular reprogramming is unknown. Our previous work revealed that (p)ppGpp can bind to and inhibit the enzymatic activity of four ribosome-associated GTPases (RA-GTPases), enzymes that facilitate maturation of the 50S and 30S ribosomal subunits. Here, we examine how this occurs mechanistically and demonstrate that this interaction prevents the accommodation of RA-GTPases on ribosomal subunits both in vitro and within bacterial cells, with the ppGpp-bound state structurally mimicking the inactive GDP-bound conformation of the enzyme. We additionally reveal that these GTPase enzymes have a greater affinity for OFF-state-inducing nucleotides, which is a mechanism likely to control ribosome assembly during growth. With this, we further our understanding of how ribosome function is controlled by (p)ppGpp, enabling bacterial survival during stress.
    Keywords:  GTPase; Staphylococcus aureus; ppGpp; ribosomes; stringent response
  27. Cell Death Differ. 2021 Nov 08.
      Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.
  28. FEBS J. 2021 Nov 10.
      The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
    Keywords:  4EHP; GIGYF proteins; cap structure; translation initiation; translational repression
  29. Elife. 2021 Nov 08. pii: e67952. [Epub ahead of print]10
      The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.
    Keywords:  E. coli; S. cerevisiae; biochemistry; chemical biology; chromosomes; gene expression; human
  30. Nat Rev Cancer. 2021 Nov 11.
      Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
  31. iScience. 2021 Nov 19. 24(11): 103274
      Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
    Keywords:  Biological sciences; Cell biology; Molecular biology
  32. Hepatology. 2021 Nov 12.
      BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the main types of primary liver cancer with high morbidity and mortality, and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC have not been elucidated.APPROACH & RESULTS: Through clinical analysis, we found that the expression of TRIM11 was upregulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with PH domain leucine rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1, thus promoted activation of protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function.
    CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in hepatocellular carcinoma through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of hepatocellular carcinoma.
    Keywords:  HCC; PHLPP1; TRIM11; ubiquitin-proteasome mediated degradation
  33. Cell Rep Med. 2021 Oct 19. 2(10): 100425
      Predicting disease progression remains a particularly challenging endeavor in chronic degenerative disorders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling the three chronic subtypes of myeloproliferative neoplasms (MPNs), we identify the blood platelet transcriptome as a proxy strategy for highly sensitive progression biomarkers that also enables prediction of advanced disease via machine-learning algorithms. The MPN platelet transcriptome reveals an incremental molecular reprogramming that is independent of patient driver mutation status or therapy. Subtype-specific markers offer mechanistic and therapeutic insights, and highlight impaired proteostasis and a persistent integrated stress response. Using a LASSO model with validation in two independent cohorts, we identify the advanced subtype MF at high accuracy and offer a robust progression signature toward clinical translation. Our platelet transcriptome snapshot of chronic MPNs demonstrates a proof-of-principle for disease risk stratification and progression beyond genetic data alone, with potential utility in other progressive disorders.
    Keywords:  MPN; biomarker; blood platelets; myeloproliferative neoplasms; platelet RNA-seq; platelet transcriptome; prediction algorithms; progression signatures; proteostasis; ruxolitinib
  34. iScience. 2021 Nov 19. 24(11): 103282
      Huntington disease (HD) is a devastating neurodegenerative disorder characterized by aggregation of huntingtin (HTT) protein containing expanded polyglutamine (polyQ) tracts. DNAJB6, a member of the DNAJ chaperone family, was reported to efficiently inhibit polyQ aggregation in vitro, in cell models, and in vivo in flies, xenopus, and mice. For the delivery of exogenous DNAJB6 to the brain, the DNAJB6 needs to be protected against (enzymatic) degradation and show good penetration into brain tissue. Here, we tested the potential of small extracellular vesicles (sEVs) derived from neural stem cells (NSCs) for delivery of DNAJB6 as anti-amyloidogenic cargo. Administration of sEVs isolated from DNAJB6-overexpressing cells to cells expressing expanded polyQ tracts suppressed HTT aggregation. Furthermore, intrathecal injection of DNAJB6-enriched sEVs into R6/2 transgenic HD mice significantly reduced mutant HTT aggregation in the brain. Taken together, our data suggest that sEV-mediated molecular chaperone delivery may hold potential to delay disease onset in HD.
    Keywords:  Cell biology; Molecular neuroscience; Molecular physiology
  35. iScience. 2021 Nov 19. 24(11): 103310
      VCP/p97 is an evolutionarily conserved AAA+ ATPase important for cellular homeostasis. Previous studies suggest that VCP predominantly exists as a homohexamer. Here, we performed structural and biochemical characterization of VCP dodecamer, an understudied state of VCP. The structure revealed an apo nucleotide status that has rarely been captured, a tail-to-tail assembly of two hexamers, and the up-elevated N-terminal domains akin to that seen in the ATP-bound hexamer. Further analyses elucidated a nucleotide status-dependent dodecamerization mechanism, where nucleotide dissociation from the D2 AAA domains induces and promotes VCP dodecamerization. In contrast, nucleotide-free D1 AAA domains are associated with the up-rotation of N-terminal domains, which may prime D1 for ATP binding. These results therefore reveal new nucleotide status-dictated intra- and interhexamer conformational changes and suggest that modulation of D2 domain nucleotide occupancy may serve as a mechanism in controlling VCP oligomeric states.
    Keywords:  Biochemistry; Biological sciences; Structural biology