bims-proteo Biomed News
on Proteostasis
Issue of 2021‒05‒30
fifty-nine papers selected by
Eric Chevet
INSERM


  1. Prog Mol Subcell Biol. 2021 ;59 115-143
      Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.
    Keywords:  Amyloid; BiP/GRP78; CANX/CALR; CFTR; Clotting factor VIII; Proinsulin; UPR
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_6
  2. Autophagy. 2021 May 24. 1-23
      Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.
    Keywords:  Mitophagy; PINK1; Parkinson disease; XBP1; phosphorylation; transcription; unfolded protein response
    DOI:  https://doi.org/10.1080/15548627.2021.1917129
  3. Prog Mol Subcell Biol. 2021 ;59 99-114
      The endoplasmic reticulum (ER) is a biosynthetic organelle in eukaryotic cells. Its capacity to produce proteins, lipids and oligosaccharides responds to physiologic and pathologic demand. The transcriptional and translational unfolded protein response (UPR) programs increase ER size and activity. In contrast, ER-phagy programs in all their flavors select ER subdomains for lysosomal clearance. These programs are activated by nutrient deprivation, accumulation of excess ER (recov-ER-phagy), production of misfolded proteins that cannot be degraded by ER-associated degradation and that are removed from cells by the so-called ER-to-lysosome-associated degradation (ERLAD). Selection of ER subdomains to be cleared from cells relies on ER-phagy receptors, a class of membrane-bound proteins displaying cytosolic domains that engage the cytosolic ubiquitin-like protein LC3. Mechanistically, ER clearance proceeds via macro-ER-phagy, micro-ER-phagy and LC3-regulated vesicular delivery.
    Keywords:  Autophagy; ER-phagy receptors; ERLAD; Endoplasmic reticulum; LC3; Macro-ER-phagy and micro-ER-phagy; Vesicular transport
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_5
  4. Yeast. 2021 May 25.
      Human kidney anion exchanger 1 (kAE1) facilitates simultaneous efflux of bicarbonate and absorption of chloride at the basolateral membrane of α-intercalated cells. In these cells, kAE1 contributes to systemic acid-base balance along with the proton pump v-H+ -ATPase and the cytosolic carbonic anhydrase II. Recent electron microscopy analyses in yeast demonstrate that heterologous expression of several kAE1 variants causes a massive accumulation of the anion transporter in intracellular membrane structures. Here, we examined the origin of these kAE1 aggregations in more detail. Using various biochemical techniques and advanced light and electron microscopy, we showed that accumulation of kAE1 mainly occurs in endoplasmic reticulum (ER) membranes which eventually leads to strong unfolded protein response (UPR) activation and severe growth defect in kAE1 expressing yeast cells. Furthermore, our data indicate that UPR activation is dose dependent and uncoupled from the bicarbonate transport activity. By using truncated kAE1 variants, we identified the C-terminal region of kAE1 as crucial factor for the increased ER stress level. Finally, a redistribution of ER-localized kAE1 to the cell periphery was achieved by boosting the ER folding capacity. Our findings not only demonstrate a promising strategy for preventing intracellular kAE1 accumulation and improving kAE1 plasma membrane targeting but also highlight the versatility of yeast as model to investigate kAE1-related research questions including the analysis of structural features, protein degradation and trafficking. Furthermore, our approach might be a promising strategy for future analyses to further optimize the cell surface targeting of other disease-related PM proteins, not only in yeast but also in mammalian cells.
    Keywords:  ER stress; chaperone; kidney anion exchanger 1 (kAE1); plasma membrane; unfolded protein response (UPR); yeast model organism
    DOI:  https://doi.org/10.1002/yea.3652
  5. Prog Mol Subcell Biol. 2021 ;59 27-50
      Molecular chaperones assist the folding of nascent chains in the cell. Chaperones also aid in quality control decisions as persistent chaperone binding can help to sort terminal misfolded proteins for degradation. There are two major molecular chaperone families in the endoplasmic reticulum (ER) that assist proteins in reaching their native structure and evaluating the fidelity of the maturation process. The ER Hsp70 chaperone, BiP, supports adenine nucleotide-regulated binding to non-native proteins that possess exposed hydrophobic regions. In contrast, the carbohydrate-dependent chaperone system involving the membrane protein calnexin and its soluble paralogue calreticulin recognize a specific glycoform of an exposed hydrophilic protein modification for which the composition is controlled by a series of glycosidases and transferases. Here, we compare and contrast the properties, mechanisms of action and functions of these different chaperones systems that work in parallel, as well as together, to assist a large variety of substrates that traverse the eukaryotic secretory pathway.
    Keywords:  Endoplasmic reticulum; Molecular chaperones; Quality control
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_3
  6. Prog Mol Subcell Biol. 2021 ;59 279-303
      The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.
    Keywords:  Aging; Caenorhabditis elegans; ER homeostasis; Proteostasis; Unfolded protein response
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_13
  7. Ageing Res Rev. 2021 May 20. pii: S1568-1637(21)00114-8. [Epub ahead of print] 101367
      Neurodegenerative diseases are one of the most common diseases in mankind. Although there are reports of several candidates that cause neurodegenerative diseases, the exact mechanism of pathogenesis is poorly understood. The ubiquitin-proteasome system (UPS) is an important posttranslational modification for protein degradation and control of homeostasis. Enzymes such as E1, E2, E3 ligases, and deubiquitinating enzymes (DUBs) participating in UPS, regulate disease-inducing proteins by controlling the degree of ubiquitination. Therefore, the development of treatments targeting enzymes for degenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is emerging as an attractive perspective. In particular, as DUBs are able to regulate one or more degenerative disease-related proteins, the potential as a therapeutic target is even more evident. DUBs influence the regulation of toxic proteins that cause neurodegenerative diseases by not only their removal, but also by regulating signals associated with mitophagy, autophagy, and endoplasmic reticulum-associated degradation (ERAD). In this review, we analyze not only the cellular processes of DUBs, which control neurodegenerative disease-inducing proteins, but also their potentials as a therapeutic agent for neurodegenerative diseases.
    Keywords:  Alzheimer’s disease; Amyotrophic lateral sclerosis; Deubiquitination; Huntington’s chorea; Parkinson’s disease; Ubiquitination
    DOI:  https://doi.org/10.1016/j.arr.2021.101367
  8. Contact (Thousand Oaks). 2021 Jan 01. 4 25152564211012246
      Membrane contact sites are formed by tether proteins that have the ability to bring two organellar membranes together. VAP proteins are a family of endoplasmic reticulum (ER)-resident tether proteins specialized in interacting with FFAT (two phenylalanines in an acidic tract) peptide motifs in other proteins. If the FFAT-motif-containing proteins reside on other organelles, VAP proteins form contact sites between these organelles and the ER. The role of VAPA and VAPB, the two founding members of the VAP family in recruiting proteins to the ER and forming membrane contact sites is well appreciated as numerous interaction partners of VAPA and VAPB at different intracellular contact sites have been characterized. Recently, three new proteins -MOSPD1, MOSPD2 and MOSPD3-have been added to the VAP family. While MOSPD2 has a motif preference similar to VAPA and VAPB, MOSPD1 and MOSPD3 prefer to interact with proteins containing FFNT (two phenylalanines in a neutral tract) motifs. In this review, we discuss the recent advances in motif binding by VAP proteins along with the other biological processes VAP proteins are involved in.
    Keywords:  FFAT; FFNT; MOSPD; VAP; endoplasmic reticulum; membrane contact sites
    DOI:  https://doi.org/10.1177/25152564211012246
  9. Sci Signal. 2021 May 25. pii: eaaz4401. [Epub ahead of print]14(684):
      During cellular stress in the budding yeast Saccharomyces cerevisiae, an endoplasmic reticulum (ER)-resident dual kinase and RNase Ire1 splices an intron from HAC1 mRNA in the cytosol, thereby releasing its translational block. Hac1 protein then activates an adaptive cellular stress response called the unfolded protein response (UPR) that maintains ER homeostasis. The polarity-inducing protein kinases Kin1 and Kin2 contribute to HAC1 mRNA processing. Here, we showed that an RNA-protein complex that included the endocytic proteins Pal1 and Pal2 mediated HAC1 mRNA splicing downstream of Kin1 and Kin2. We found that Pal1 and Pal2 bound to the 3' untranslated region (3'UTR) of HAC1 mRNA, and a yeast strain lacking both Pal1 and Pal2 was deficient in HAC1 mRNA processing. We also showed that Kin1 and Kin2 directly phosphorylated Pal2, and that a nonphosphorylatable Pal2 mutant could not rescue the UPR defect in a pal1Δ pal2Δ strain. Thus, our work uncovers a Kin1/2-Pal2 signaling pathway that coordinates HAC1 mRNA processing and ER homeostasis.
    DOI:  https://doi.org/10.1126/scisignal.aaz4401
  10. Plant Commun. 2021 May 10. 2(3): 100186
      Accumulating evidence has revealed that the ubiquitin proteasome system plays fundamental roles in the regulation of diverse cellular activities in eukaryotes. The ubiquitin protein ligases (E3s) are central to the proteasome system because of their ability to determine its substrate specificity. Several studies have demonstrated the essential role of a group of ER (endoplasmic reticulum)-localized E3s in the positive or negative regulation of cell homeostasis. Most ER-related E3s are conserved between plants and mammals, and a few plant-specific components have been reported. In this review, we summarize the functions of ER-related E3s in plant growth, ER-associated protein degradation and ER-phagy, abiotic and biotic stress responses, and hormone signaling. Furthermore, we highlight several questions that remain to be addressed and suggest directions for further research on ER-related E3 ubiquitin ligases.
    Keywords:  E3 ligase; ERAD; UPS; plant endoplasmic reticulum; stress response
    DOI:  https://doi.org/10.1016/j.xplc.2021.100186
  11. J Cell Sci. 2022 Mar 01. pii: jcs256206. [Epub ahead of print]135(5):
      Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.
    Keywords:   Saccharomyces cerevisiae ; Endoplasmic reticulum; Lipid droplets; Perilipins; Seipin; Steryl esters; Triacylglycerols
    DOI:  https://doi.org/10.1242/jcs.256206
  12. Biochem Biophys Res Commun. 2021 May 25. pii: S0006-291X(21)00802-0. [Epub ahead of print]562 94-99
      Conjugation of K48-linked ubiquitin chains to intracellular proteins mainly functions as a signal for proteasomal degradation. The conjugating enzyme E2-25K synthesizes not only canonical (noncyclic) but also cyclic K48-linked ubiquitin chains. Although the cyclic conformation is expected to repress molecular recognition by ubiquitin binding proteins due to restricting the flexibility of the ubiquitin subunits in a chain, multiple proteins are reported to associate with cyclic ubiquitin chains similar to noncyclic chains. However, the molecular mechanism of how cyclic ubiquitin chains are recognized remains unclear. Here we investigated the effect of cyclization on ubiquitin-chain cleavage and molecular recognition by a K48-linkage specific deubiquitinating enzyme OTUB1 for cyclic diubiquitin by NMR spectroscopic analyses. Compared to noncyclic diubiquitin, we observed slow but unambiguously detectable cleavage of cyclic diubiquitin to monoubiquitin by OTUB1. Intriguingly, upon ubiquitin chain cleavage, cyclic diubiquitin appeared to alter its "autoinhibited" conformation to an incompletely but partially accessible conformation, induced by interaction with OTUB1 via the ubiquitin-subunit specific recognition patches and adjacent surfaces. These data imply that cyclic ubiquitin chains may exist stably in cells in spite of the presence of deubiquitinating enzymes and that these chains can be recognized by intracellular proteins in a manner distinct from that of noncyclic ubiquitin chains.
    Keywords:  Cyclic ubiquitin; Deubiquitination; K48-linked ubiquitin chains; NMR; OTUB1
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.031
  13. Prog Mol Subcell Biol. 2021 ;59 197-214
      The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.
    Keywords:  Endoplasmic reticulum; cancer; proteostasis; quality control
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_10
  14. Nat Chem Biol. 2021 Jun;17(6): 711-717
      The zinc-finger transcription factor Helios is critical for maintaining the identity, anergic phenotype and suppressive activity of regulatory T (Treg) cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of Treg cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small-molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.
    DOI:  https://doi.org/10.1038/s41589-021-00802-w
  15. Methods Mol Biol. 2021 ;2255 13-20
      The unfolded protein response is a cellular adaptive mechanism localized in the endoplasmic reticulum. It involves three phases: the detection of increased presence of unfolded proteins as a result of cellular stressors; the execution of an adaptive cascade of events aimed at the enhancement of proper protein folding and degradation of improperly folded proteins; and finally, when stress is not alleviated, the execution of programmed cell death. The main effectors of the UPR are transcription factors involved in the upregulation of either chaperone proteins or proapoptotic proteins. Two of these transcription factors are CHOP and the spliced variant of XBP-1 (XBP1s). In this chapter, we describe a quantitative PCR method to detect the upregulation of CHOP and XBP1s mRNA during Tunicamycin-induced UPR.
    Keywords:  BiP; CHOP; RT-PCR; Real-time PCR; Spliced  XBP1; UPR
    DOI:  https://doi.org/10.1007/978-1-0716-1162-3_2
  16. Prog Mol Subcell Biol. 2021 ;59 239-278
      Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
    Keywords:  Aging; ER stress; Metabolic syndrome; Neurodegenerative diseases; Protein misfolding
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_12
  17. J Cell Biol. 2021 Aug 02. pii: e202012104. [Epub ahead of print]220(8):
      The lysosome (or vacuole in fungi and plants) is an essential organelle for nutrient sensing and cellular homeostasis. In response to environmental stresses such as starvation, the yeast vacuole can adjust its membrane composition by selectively internalizing membrane proteins into the lumen for degradation. Regarding the selective internalization mechanism, two competing models have been proposed. One model suggests that the ESCRT machinery is responsible for the sorting. In contrast, the ESCRT-independent intralumenal fragment (ILF) pathway proposes that the fragment generated by homotypic vacuole fusion is responsible for the sorting. Here, we applied a microfluidics-based imaging method to capture the complete degradation process in vivo. Combining live-cell imaging with a synchronized ubiquitination system, we demonstrated that ILF cargoes are not degraded through intralumenal fragments. Instead, ESCRTs function on the vacuole membrane to sort them into the lumen for degradation. We further discussed challenges in reconstituting vacuole membrane protein degradation.
    DOI:  https://doi.org/10.1083/jcb.202012104
  18. Biochem Biophys Res Commun. 2021 May 23. pii: S0006-291X(21)00809-3. [Epub ahead of print]562 69-75
      XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells. Xv1 contains a cryptic first exon that is conserved only in humans and great apes. Comparing to XBP1, Xv1 encodes a protein with a different N-terminal sequence containing 25 amino acids. Analysis of RNAseq database reveals that Xv1 is broadly expressed across cancer types but almost none in normal tissues. Elevated Xv1 expression is associated with poor survival of patients with several types of cancer. Knockdown of Xv1 induces death of multiple cancer cell lines but has little effect on non-cancerous cells in vitro. Moreover, knockdown of Xv1 also inhibits growth of a xenograft breast tumor in mice. Together, our results indicate that Xv1 is essential for survival of cancer cells.
    Keywords:  Cancer cell survival; XBP1; XBP1v1; Xv1
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.038
  19. J Invest Dermatol. 2021 May 25. pii: S0022-202X(21)01243-4. [Epub ahead of print]
      Melanoma cells are relatively resistant to ER stress, which contributes to tumor progression under stressful conditions and renders tolerance to ER stress-inducing therapeutic agents. Mitochondria are tightly interconnected with ER. However, whether mitochondria play a role in regulating ER stress resistance in melanoma remains elusive. Herein, we reported that the XBP1-MARCH5-MFN2 axis conferred ER stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. Our integrative bioinformatics first revealed that the down-regulation of mitochondrial genes was highly correlated with UPR activation in melanoma. Then we proved that mitochondrial fission and mitophagy were prominently induced to contribute to ER stress resistance both in vitro and in vivo by maintaining mitochondrial function. Mechanistically, the activation of IRE1α/ATF6-XBP1 branches of UPR promoted the transcription of E3 ligase MARCH5 to facilitate the ubiquitination and degradation of MFN2, which thereby triggered mitochondrial fission and mitophagy under ER stress. Together, our findings demonstrate a regulatory axis that links mitochondrial fission and mitophagy to the resistance to ER stress. Targeting mitochondrial quality control machinery can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.
    Keywords:  ER stress; MFN2; melanoma; mitochondrial fission; mitophagy
    DOI:  https://doi.org/10.1016/j.jid.2021.03.031
  20. Prog Mol Subcell Biol. 2021 ;59 13-25
      Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.
    Keywords:  Calnexin; Calreticulin; Chaperone; Lectin; Protein stability; Protein structure; Protein synthesis
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_2
  21. Prog Mol Subcell Biol. 2021 ;59 163-180
      The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
    Keywords:  Calcium signaling; Calreticulin; Endoplasmic reticulum; Lipid biosynthesis; Myeloproliferative neoplasms; Protein folding
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_8
  22. Trends Endocrinol Metab. 2021 May 22. pii: S1043-2760(21)00115-6. [Epub ahead of print]
      Type 2 diabetes mellitus (T2DM) is a global health challenge. Therefore, understanding the molecular mechanisms underlying the pathophysiology of T2DM is key to improving current therapies. Loss of protein homeostasis leads to the accumulation of damaged proteins in cells, which results in tissue dysfunction. The elimination of damaged proteins occurs through the ubiquitin-proteasome system (UPS) and autophagy. In this review, we describe the mutual regulation between the UPS and autophagy and the involvement of these two proteolytic systems in metabolic dysregulation, insulin resistance, and T2DM. We propose that alterations in the UPS or autophagy contribute to triggering insulin resistance and the development of T2DM. In addition, these two pathways emerge as promising therapeutic targets for improving insulin resistance.
    Keywords:  E3-ubiquitin ligases; UPS-autophagy crosstalk; autophagy; proteaphagy; proteasome
    DOI:  https://doi.org/10.1016/j.tem.2021.04.015
  23. Chembiochem. 2021 May 27.
      Aging is characterized by changes in several cellular processes, including dysregulation of proteostasis. Current research has shown long-lived rodents display elevated proteasome activity throughout life and proteasome dysfunction is linked to shorter lifespans in a transgenic mouse model. The Ubiquitin Proteasome System (UPS) is one of the main pathways leading to cellular protein clearance and quality maintenance. Reduction in proteasome activity is associated with aging and its related pathologies. Small molecule stimulators of the proteasome have been proposed to help alleviate cellular stress related to unwanted protein accumulation. Here we have described the development of techniques to monitor the impact of proteasome stimulation in wild-type yeast and a strain that has impaired proteasome expression. We validated our chronological lifespan assay using both types of yeast with a variety of small molecule stimulators at different concentrations. By modifying the media conditions for the yeast, molecules can be evaluated for their potential to increase chronological lifespan in five days. Additionally, our assay conditions can be used to monitor the activity of proteasome stimulators in modulating the degradation of a YFP-alpha-synuclein fusion protein produced by yeast. We anticipate these methods to be valuable for those wishing to study the impact of increasing proteasome-mediated degradation of proteins in a eukaryotic model organism.
    Keywords:  Proteasome, model, aging, yeast, stimulator
    DOI:  https://doi.org/10.1002/cbic.202100117
  24. Planta. 2021 May 25. 253(6): 126
      MAIN CONCLUSION: A conserved cysteine residue (C266)-mediated homo-dimerization of SIE3 is required for the ubiquitination and degradation of SIP1 transcription factor in Lotus japonicas CTLH/CRA/RING-containing proteins have been shown to possess E3-ligase activities and are crucial for the regulation of numerous cellular signaling pathways. In our previous studies, SIE3 (SymRK-Interacting E3 ubiquitin ligase), a CTLH/CRA/RING-containing protein from Lotus japonicus, has been shown to associate with both Symbiosis Receptor Kinase (SymRK) and SIP1 (SymRK interacting protein 1) transcription factor, and ubiquitinate SymRK (Yuan et al. Plant Physiol 160 (1):106-117, 2012; Feng et al. Front Plant Sci 11: 795, 2020). Besides, we previously also demonstrated that the residue, cysteine-266 in the CRA (CT11-RanBPM) domain is required for homodimerization of SIE3 and cysteine-266 residue-mediated homodimerization is important for the symbiosic function of SIE3 (Feng et al. 2020). In this report, SIE3 was shown to induce the ubiquitination and degradation of SIP1. The cysteine-266 residue is essential for the E3-ligase activity and is highly conserved in the SIE3-like proteins. Our works refined the working model that homodimerization of SIE3 is required for ubiquitin-related degradation of SIP1 and found a conserved cysteine residue plays a key role in the activity of a plant dimeric E3 ligase.
    Keywords:  CTLH/CRA/RING-containing protein; Dimeric E3 ligase; E3 ligase activity; SIE3-C266; Ubiquitinated substrate
    DOI:  https://doi.org/10.1007/s00425-021-03647-8
  25. SLAS Discov. 2021 May 27. 24725552211017517
      Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.
    Keywords:  E3 ubiquitin ligases; HTE; HaloTag; PROTACs; phenotypic screening; targeted protein degradation
    DOI:  https://doi.org/10.1177/24725552211017517
  26. J Cell Biol. 2021 Aug 02. pii: e202009092. [Epub ahead of print]220(8):
      Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
    DOI:  https://doi.org/10.1083/jcb.202009092
  27. J Struct Biol. 2021 May 22. pii: S1047-8477(21)00053-8. [Epub ahead of print] 107748
      In Saccharomyces cerevisiae, the glyoxylate cycle is controlled through the posttranslational regulation of its component enzymes, such as isocitrate lyase (ICL), which catalyzes the first unique step of the cycle. The ICL of S.cerevisiae (ScIcl1) is tagged for proteasomal degradation through ubiquitination by a multisubunit ubiquitin ligase (the glucose-induced degradation-deficient (GID) complex), whereas that of the pathogenic yeast Candida albicans (CaIcl1) escapes this process. However, the reason for the ubiquitin targeting specificity of the GID complex for ScIcl1 and not for CaIcl1 is unclear. To gain some insight into this, in this study, the crystal structures of apo ScIcl1 and CaIcl1 in complex with formate and the cryogenic electron microscopy structure of apo CaIcl1 were determined at a resolution of 2.3, 2.7, and 2.6Å, respectively. A comparison of the various structures suggests that the orientation of N-terminal helix α1 in S.cerevisiae is likely key to repositioning of ubiquitination sites and contributes to the distinction found in C.albicans ubiquitin evasion mechanism. This finding gives us a better understanding of the molecular mechanism of ubiquitin-dependent ScIcl1 degradation and could serve as a theoretical basis for the research and development of anti-C.albicans drugs based on the concept of CaIcl1 ubiquitination.
    Keywords:  3d structure; glyoxylate cycle; pathogenic yeast; ubiquitination; yeast metabolism
    DOI:  https://doi.org/10.1016/j.jsb.2021.107748
  28. Appl Environ Microbiol. 2021 May 28. AEM0030121
      Recombinant protein production is a known source of oxidative stress. Knowledge of which ROS are involved or the specific growth phase in which stress occurs however remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, micro-cultivation and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find Gcn2-dependent phosphorylation of eIF2α to increase alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains, but not in the wild-type. Gcn2-deficiency furthermore reduced intracellular H2O2 levels and the Hac1 splicing ratio whilst expression of antioxidants and the ER disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding to be coupled and subject to feedback inhibition by H2O2. Importance Recombinant protein production is a multi-billion dollar industry. Optimizing the productivity of host cells is, therefore, of large interest. In several hosts oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses which could compromise the productivity of the host cell. Here we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H2O2) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2 we observed a doubling of recombinant protein productivity in addition to reduced H2O2 levels in the cytosol. By this study we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.
    DOI:  https://doi.org/10.1128/AEM.00301-21
  29. Autophagy. 2021 May 28. 1-3
      Increasing evidence supports the bona fide function of the coat protein complex II (COPII) machinery in regulating autophagosomes biogenesis during macroautophagy/autophagy induced by nutrient starvation. However, the participation of the COPII machinery in the plant autophagy pathway remains elusive. We recently identified a unique population of COPII vesicles containing AT3G62560/AtSar1d-AT1G02130/AtRabD2a that functions in modulating autuphagosome biogenesis in Arabidopsis thaliana. Proteomic analysis identified the mechanistic connection between autophagy-related (ATG) proteins and a subset of specific COPII paralogs, including AtSar1d. Mutants of AtSar1d affect autophagosome progression and display starvation-related phenotypes. AtSar1d interacts with ATG8 by a non-canonical motif. Cellular and genetic analysis demonstrated that a plant-unique RAB1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to mediate the specific COPII functions in the autophagy pathway. This study identified a plant-specific nexus in regulating autophagosome biogenesis.
    Keywords:  Arabidopsis; COPII; GTPase; autophagy; stress
    DOI:  https://doi.org/10.1080/15548627.2021.1933298
  30. Brain. 2021 May 24. pii: awab207. [Epub ahead of print]
      Solute carrier family 6 member 1 (SLC6A1) is abundantly expressed in the developing brain even before the central nervous system is formed. Its encoded GABA transporter 1 is responsible for the reuptake of GABA into presynaptic neurons and glia, thereby modulating neurotransmission. GABA transporter 1 is expressed globally in the brain, in both astrocytes and neurons. The GABA uptake function of GABA transporter 1 in neurons cannot be compensated for by other GABA transporters, while the function in glia can be partially replaced by GABA transporter 3. Recently, many variants in SLC6A1 have been associated with a spectrum of epilepsy syndromes and neurodevelopmental disorders, including myoclonic atonic epilepsy, childhood absence epilepsy, autism, and intellectual disability, but the patho-mechanisms associated with these phenotypes remain unclear. The presence of GABA transporter 1 in both neurons and astrocytes further obscures the role of abnormal GABA transporter 1 in the heterogenous disease phenotype manifestations. Here we examine the impact on transporter trafficking and function of twenty-two SLC6A1 variants identified in patients with a broad spectrum of phenotypes. We also evaluate changes in protein expression and subcellular localization of the variant GABA transporter 1 in various cell types, including neurons and astrocytes derived from human patient induced pluripotent stem cells. We found that a partial or complete loss of function represents a common disease mechanism, although the extent of GABA uptake reduction is variable. The reduced GABA uptake appears to be due to reduced cell surface expression of the variant transporter caused by variant protein misfolding, endoplasmic reticulum retention, and subsequent degradation. Although the extent of reduction of the total protein, surface protein, and the GABA uptake level of the variant transporters is variable, the loss of GABA uptake function and endoplasmic reticulum retention is consistent across induced pluripotent stem cell-derived cell types, including astrocytes and neurons, for the surveyed variants. Interestingly, we did not find a clear correlation of GABA uptake function and the disease phenotypes, such as myoclonic atonic epilepsy vs developmental delay, in this study. Together, our study suggests that impaired transporter protein trafficking and surface expression are the major disease-associated mechanisms associated with pathogenic SLC6A1 variants. Our results resemble findings from pathogenic variants in other genes affecting the GABA pathway, such as GABAA receptors. This study provides critical insight into therapeutic developments for SLC6A1 variant-mediated disorders and implicates that boosting transporter function by either genetic or pharmacologic approaches would be beneficial.
    Keywords:  ER retention; GABA transporter 1 (GAT-1); SLC6A1; autism; epilepsy
    DOI:  https://doi.org/10.1093/brain/awab207
  31. Mol Cell Oncol. 2021 ;8(3): 1915076
      Ubiquitin-proteasome system and autophagy are the two major recycling processes. Our recent work uncovers a K29/K48 branched ubiquitination on the phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3, best known as VPS34). This ubiquitination is positively or negatively regulated under pathophysiological conditions to influence on autophagy, proteostasis and lipid homeostasis.
    Keywords:  Autophagy; branched ubiquitination; liver steatosis; protein quality control; vps34
    DOI:  https://doi.org/10.1080/23723556.2021.1915076
  32. Front Immunol. 2021 ;12 682624
      Ubiquitination is a process that acts upon every step of the HIV replication cycle. The activity, subcellular localization, and stability of HIV dependency factors as well as negative modulators can be affected by ubiquitination. These modifications consequently have an impact on the progression and outcome of infection. Additionally, recent findings suggest new roles for ubiquitination in the interplay between HIV and the cellular environment, specifically in the interactions between HIV, autophagy and apoptosis. On one hand, autophagy is a defense mechanism against HIV that promotes the degradation of the viral protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV replication. Hence, this post-translational modification in Gag represents a double-edged sword: necessary for virion biogenesis, but potentially detrimental under conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might promote apoptosis. Moreover, this effect of Nef might account for HIV-associated disorders. In this article, we outline our current knowledge and provide perspectives of how ubiquitination impacts the molecular interactions between HIV, autophagy and apoptosis.
    Keywords:  BCL2; BECN1; HIV; Nef; PRKN; apoptosis; autophagy
    DOI:  https://doi.org/10.3389/fimmu.2021.682624
  33. Prog Mol Subcell Biol. 2021 ;59 1-11
      Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
    Keywords:  Calcium homeostasis; Calreticulin; ER stress; Endoplasmic reticulum
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_1
  34. Prog Mol Subcell Biol. 2021 ;59 181-196
      The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.
    Keywords:  Calnexin; Calreticulin; Drug resistance; Immunogenic cell death; Integrins; Oncogenic signaling; PDIA3
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_9
  35. Adv Sci (Weinh). 2021 May 29. e2004504
      Genomic amplification of OTUD7B is frequently found across human cancers. But its role in tumorigenesis is poorly understood. Lysine-specific demethylase 1 (LSD1) is known to execute epigenetic regulation by forming corepressor complex with CoREST/histone deacetylases (HDACs). However, the molecular mechanisms by which cells maintain LSD1/CoREST complex integrity are unknown. Here, it is reported that LSD1 protein undergoes K63-linked polyubiquitination. OTUD7B is responsible for LSD1 deubiquitination at K226/277 residues, resulting in dynamic control of LSD1 binding partner specificity and cellular homeostasis. OTUD7B deficiency increases K63-linked ubiquitination of LSD1, which disrupts LSD1/CoREST complex formation and targets LSD1 for p62-mediated proteolysis. Consequently, OTUD7B deficiency impairs genome-wide LSD1 occupancy and enhances the methylation of H3K4/H3K9, therefore profoundly impacting global gene expression and abrogating breast cancer metastasis. Moreover, physiological fluctuation of OTUD7B modulates cell cycle-dependent LSD1 oscillation, ensuring the G1/S transition. Both OTUD7B and LSD1 proteins are overpresented in high-grade or metastatic human breast cancer, while dysregulation of either protein is associated with poor survival and metastasis. Thus, OTUD7B plays a unique partner-switching role in maintaining the integrity of LSD1/CoREST corepressor complex, LSD1 turnover, and breast cancer metastasis.
    Keywords:  deubiquitination; epigenetic modification; gene transcription; metastasis
    DOI:  https://doi.org/10.1002/advs.202004504
  36. Cell Chem Biol. 2021 May 03. pii: S2451-9456(21)00205-1. [Epub ahead of print]
      Cereblon (CRBN), originally identified as a gene associated with intellectual disability, was identified as primary target of thalidomide. Accumulating evidence has shown that CRBN is a substrate receptor of Cullin Ring E3 ubiquitin ligase 4 (CRL4) containing DDB1, CUL4, and RBX1, which recognizes specific neosubstrates in the presence of thalidomide or its analogs and induces their ubiquitination and proteasomal degradation. A set of small-molecule, CRBN-binding drugs are known as molecular glue degraders because these compounds promote the interaction between CRBN and its neosubstrates. Moreover, CRBN-based proteolysis-targeting chimeras, heterobifunctional molecules hijacking CRBN and inducing degradation of proteins of interest, have emerged as a promising modality in drug development and are being actively investigated. Meanwhile, the original functions and regulations of CRBN are still largely elusive. In this review, we describe key findings surrounding CRBN since its discovery and then discuss a few unanswered issues.
    Keywords:  cereblon; molecular glue degraders; thalidomide; ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.chembiol.2021.04.012
  37. Plant Cell Environ. 2021 May 25.
      A transient heat stress occurring during early seed development in rice (Oryza sativa) reduces seed size by altering endosperm development. However, the relationship between the timing of the stress and specific developmental stage on heat sensitivity is not well-understood. To address this, we imposed a series of non-overlapping heat stress treatments and found that young seeds are most sensitive during the first two days after flowering. Temporal transcriptome analysis of developing, heat stressed (35°C) seeds during this window shows that Inositol-requiring enzyme 1 (IRE1)-mediated endoplasmic reticulum (ER) stress response and jasmonic acid (JA) pathways are the early (1-3 h) drivers of heat stress response. We propose that increased JA levels under heat stress may precede ER stress response as JA application promotes the spliced form of OsbZIP50, an ER response marker gene linked to IRE1-specific pathway. This study presents temporal and mechanistic insights into the role of JA and ER stress signaling during early heat stress response of rice seeds that impact both grain size and quality. Modulating the heat sensitivity of the early sensing pathways and downstream endosperm development genes can enhance rice resilience to transient heat stress events.
    Keywords:  cell cycle; coenocytic endosperm; endoplasmic reticulum; heat stress; jasmonic acid; rice; seed development; temporal-transcriptome
    DOI:  https://doi.org/10.1111/pce.14103
  38. Appl Microbiol Biotechnol. 2021 May 26.
      Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
    Keywords:  Chaperone; Co-expression strategy; Folding and secretion; Pichia pastoris; Productivity of recombinant protein production; Unfolded protein response (UPR)
    DOI:  https://doi.org/10.1007/s00253-021-11336-5
  39. Cell Microbiol. 2021 May 26. e13368
      The Dot/Icm system of Legionella pneumophila is essential for virulence and delivers a large repertoire of effectors into infected host cells to create the Legionella containing vacuole. Since the secretion of effectors via the Dot/Icm system does not occur in the absence of host cells, we hypothesized that host factors actively participate in Dot/Icm effector translocation. Here we employed a high-throughput, genome-wide siRNA screen to systematically test the effect of silencing 18,120 human genes on translocation of the Dot/Icm effector, RalF, into HeLa cells. For the primary screen, we found that silencing of 119 genes led to increased translocation of RalF, while silencing of 321 genes resulted in decreased translocation. Following secondary screening, 70 genes were successfully validated as 'high confidence' targets. Gene set enrichment analysis of siRNAs leading to decreased RalF translocation, showed that ubiquitination was the most highly overrepresented category in the pathway analysis. We further showed that two host factors, the E2 ubiquitin conjugating enzyme, UBE2E1, and the E3 ubiquitin ligase, CUL7, were important for supporting Dot/Icm translocation and L. pneumophila intracellular replication. In summary, we identified host ubiquitin pathways as important for the efficiency of Dot/Icm effector translocation by L. pneumophila, suggesting that host-derived ubiquitin-conjugating enzymes and ubiquitin ligases participate in the translocation of Legionella effector proteins and influence intracellular persistence and survival. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1111/cmi.13368
  40. Sci Adv. 2021 May;pii: eabf0971. [Epub ahead of print]7(22):
      In response to disturbed mitochondrial gene expression and protein synthesis, an adaptive transcriptional response sharing a signature of the integrated stress response (ISR) is activated. We report an intricate interplay between three transcription factors regulating the mitochondrial stress response: CHOP, C/EBPβ, and ATF4. We show that CHOP acts as a rheostat that attenuates prolonged ISR, prevents unfavorable metabolic alterations, and postpones the onset of mitochondrial cardiomyopathy. Upon mitochondrial dysfunction, CHOP interaction with C/EBPβ is needed to adjust ATF4 levels, thus preventing overactivation of the ATF4-regulated transcriptional program. Failure of this interaction switches ISR from an acute to a chronic state, leading to early respiratory chain deficiency, energy crisis, and premature death. Therefore, contrary to its previously proposed role as a transcriptional activator of mitochondrial unfolded protein response, our results highlight a role of CHOP in the fine-tuning of mitochondrial ISR in mammals.
    DOI:  https://doi.org/10.1126/sciadv.abf0971
  41. Arch Virol. 2021 May 26.
      Infectious bronchitis virus (IBV) is the only coronavirus known to infect poultry. The replication and pathogenesis of IBV are poorly understood, mainly because of the unavailability of a robust cell culture system. Here, we report that an active ubiquitin proteasome system (UPS) is necessary for efficient replication of IBV in Vero cells. Synthesis of IBV-specific RNA as well as viral protein is hampered in the presence of chemical inhibitors specific for the UPS. Like other coronaviruses, IBV encodes a papain-like protease (PLpro) that exhibits in vitro deubiquitinase activity in addition to proteolytically processing the replicase polyprotein. Our results show that the IBV PLpro enzyme inhibits the synthesis of interferon beta (IFNβ) in infected chicken embryonic fibroblast (DF-1) cells and that this activity is enhanced in the presence of melanoma differentiation-associated protein 5 (MDA5) and TANK binding kinase 1 (TBK1). IBV PLpro, when overexpressed in DF-1 cells, deubiquitinates MDA5 and TBK1. Both of these proteins, along with other adapter molecules such as MAVS, IKKε, and IRF3, form a signaling cascade for the synthesis of IFNβ. Ubiquitination of MDA5 and TBK1 is essential for their activation, and their deubiquitination by IBV PLpro renders them unable to participate in antiviral signaling. This study shows for the first time that there is cross-talk between the UPS and the innate immune response during IBV infection and that the deubiquitinase activity of IBV PLpro is involved in its activity as an IFN antagonist. This insight will be useful for designing better antivirals targeting the catalytic activity of the IBV PLpro enzyme.
    DOI:  https://doi.org/10.1007/s00705-021-05073-3
  42. Blood Cancer Discov. 2021 May;2(3): 250-265
      Thalidomide analogs exert their therapeutic effects by binding to the CRL4CRBN E3 ubiquitin ligase, promoting ubiquitination and subsequent proteasomal degradation of specific protein substrates. Drug-induced degradation of IKZF1 and IKZF3 in B-cell malignancies demonstrates the clinical utility of targeting disease-relevant transcription factors for degradation. Here, we found that avadomide (CC-122) induces CRBN-dependent ubiquitination and proteasomal degradation of ZMYM2 (ZNF198), a transcription factor involved in balanced chromosomal rearrangements with FGFR1 and FLT3 in aggressive forms of hematologic malignancies. The minimal drug-responsive element of ZMYM2 is a zinc-chelating MYM domain and is contained in the N-terminal portion of ZMYM2 that is universally included in the derived fusion proteins. We demonstrate that avadomide has the ability to induce proteasomal degradation of ZMYM2-FGFR1 and ZMYM2-FLT3 chimeric oncoproteins, both in vitro and in vivo. Our findings suggest that patients with hematologic malignancies harboring these ZMYM2 fusion proteins may benefit from avadomide treatment.
    Keywords:  fusion oncoproteins; hematologic malignancies; thalidomide analogs; ubiquitination; zinc finger protein
    DOI:  https://doi.org/10.1158/2643-3230.bcd-20-0105
  43. Nucleic Acids Res. 2021 May 22. pii: gkab362. [Epub ahead of print]
      Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.
    DOI:  https://doi.org/10.1093/nar/gkab362
  44. Prog Mol Subcell Biol. 2021 ;59 145-162
      The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
    Keywords:  Calcium signaling; Calnexin; Calreticulin; Major Histocompatibility Complex (MHC) class I; Myeloproliferative neoplasms; PDIA3; Phagocytosis of apoptotic cells
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_7
  45. Eur J Pharmacol. 2021 May 25. pii: S0014-2999(21)00358-7. [Epub ahead of print] 174205
      The K+-Cl- co-transporter 2 (KCC2) is a neuron-specific Cl- extruder in the dorsal horn of spinal cord. The low intracellular Cl- concentration established by KCC2 is critical for GABAergic and glycinergic systems to generate synaptic inhibition. Peripheral nerve lesions have been shown to cause KCC2 dysfunction in adult spinal cord through brain-derived neurotrophic factor (BDNF) signaling, which switches the hyperpolarizing inhibitory transmission to be depolarizing and excitatory. However, the mechanisms by which BDNF impairs KCC2 function remain to be elucidated. Here we found that BDNF treatment enhanced KCC2 ubiquitination in the dorsal horn of adult mice, a post-translational modification that leads to KCC2 degradation. Our data showed that spinal BDNF application promoted KCC2 interaction with Casitas B-lineage lymphoma b (Cbl-b), one of the E3 ubiquitin ligases that are involved in the spinal processing of nociceptive information. Knockdown of Cbl-b expression decreased KCC2 ubiquitination level and attenuated the pain hypersensitivity induced by BDNF. Spared nerve injury significantly increased KCC2 ubiquitination, which could be reversed by inhibition of TrkB receptor. Our data implicated that KCC2 was one of the important pain-related substrates of Cbl-b and that ubiquitin modification contributed to BDNF-induced KCC2 hypofunction in the spinal cord.
    Keywords:  Brain derived neurotrophic factor; Casitas B-lineage lymphoma b; K(+)-Cl(-) co-transporter 2; Pain; Ubiquitylation
    DOI:  https://doi.org/10.1016/j.ejphar.2021.174205
  46. Autophagy. 2021 May 24. 1-22
      Current disease-modifying therapies for Huntington disease (HD) focus on lowering mutant HTT (huntingtin; mHTT) levels, and the immunosuppressant drug rapamycin is an intriguing therapeutic for aging and neurological disorders. Rapamycin interacts with FKBP1A/FKBP12 and FKBP5/FKBP51, inhibiting the MTORC1 complex and increasing cellular clearance mechanisms. Whether the levels of FKBP (FK506 binding protein) family members are altered in HD models and if these proteins are potential therapeutic targets for HD have not been investigated. Here, we found levels of FKBP5 are significantly reduced in HD R6/2 and zQ175 mouse models and human HD isogenic neural stem cells and medium spiny neurons derived from induced pluripotent stem cells. Moreover, FKBP5 interacts and colocalizes with HTT in the striatum and cortex of zQ175 mice and controls. Importantly, when we decreased FKBP5 levels or activity by genetic or pharmacological approaches, we observed reduced levels of mHTT in our isogenic human HD stem cell model. Decreasing FKBP5 levels by siRNA or pharmacological inhibition increased LC3-II levels and macroautophagic/autophagic flux, suggesting autophagic cellular clearance mechanisms are responsible for mHTT lowering. Unlike rapamycin, the effect of pharmacological inhibition with SAFit2, an inhibitor of FKBP5, is MTOR independent. Further, in vivo treatment for 2 weeks with SAFit2, results in reduced HTT levels in both HD R6/2 and zQ175 mouse models. Our studies establish FKBP5 as a protein involved in the pathogenesis of HD and identify FKBP5 as a potential therapeutic target for HD.Abbreviations : ACTB/β-actin: actin beta; AD: Alzheimer disease; BafA1: bafilomycin A1; BCA: bicinchoninic acid; BBB: blood brain barrier; BSA: bovine serum albumin; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FKBPs: FK506 binding proteins; HD: Huntington disease; HTT: huntingtin; iPSC: induced pluripotent stem cells; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MES: 2-ethanesulfonic acid; MOPS: 3-(N-morphorlino)propanesulfonic acid); MSN: medium spiny neurons; mHTT: mutant huntingtin; MTOR: mechanistic target of rapamycin kinase; NSC: neural stem cells; ON: overnight; PD: Parkinson disease; PPIase: peptidyl-prolyl cis/trans-isomerases; polyQ: polyglutamine; PPP1R1B/DARPP-32: protein phosphatase 1 regulatory inhibitor subunit 1B; PTSD: post-traumatic stress disorder; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TBST:Tris-buffered saline, 0.1% Tween 20; TUBA: tubulin; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: littermate controls.
    Keywords:  Autophagy; Huntington disease; SAFit2; fkbp12.6/fkbp1b; fkbp12/fkbp1a; fkbp51/fkbp5; fkbp52/fkbp4; induced pluripotent stem cells
    DOI:  https://doi.org/10.1080/15548627.2021.1904489
  47. J Proteome Res. 2021 May 27.
      As optimum temperature is essential for all living organisms, heat shock represents a challenging problem for their survival. Therefore, cellular response to heat shock is among the most extensively investigated stress response pathways; however, how the human proteome responds to heat shock has not been comprehensively investigated. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC), together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, to fulfill an in-depth analysis of the alterations in the human proteome in M14 human melanoma cells in response to heat shock stress. We found that, after heat shock, 284 and 278 out of the 4319 quantified proteins were with substantially diminished and elevated expressions, respectively. We also examined the alterations in human kinome after heat shock by using our recently developed targeted proteomic method relying on parallel-reaction monitoring. Our results showed that the expression levels of 11 and 22 kinase proteins were increased and decreased, respectively, by at least 1.5-fold upon heat shock. By interrogating publicly available RNA-seq and m6A sequencing data, we observed that the elevated expression of more than 30 proteins, including CHEK1 and CCND3 kinases, could occur via an m6A-mediated mechanism. Furthermore, our results from single-base elongation and ligation-based quantitative polymerase chain reaction (qPCR) amplification (SELECT) and luciferase reporter assays revealed that heat shock gave rise to elevated m6A levels at A280 and A286 sites in the 5'-untranslated region of HSPH1 mRNA, thereby leading to increased translation of HSPH1 protein. Together, our discovery and targeted proteomic methods revealed the reprogramming of human proteome and kinome upon heat shock stress and provided insights into cellular responses toward heat shock stress.
    Keywords:  N6-methyladenosine; epitranscriptomics; heat shock; heat shock proteins; kinase; kinome; parallel-reaction monitoring; quantitative proteomics
    DOI:  https://doi.org/10.1021/acs.jproteome.1c00191
  48. Autophagy. 2021 May 26. 1-15
      Aberrant chaperone-mediated autophagy (CMA) activation has been suggested as a tumorigenesis-promoting event in various cancers, although its roles in prostate cancer (PCa) remain elusive. Emerging evidence indicates that TPD52 isoform 1, a prostate-specific and androgen-responsive gene, contributes to the malignant progression of PCa. Here, we demonstrate that TPD52 enhances CMA activation by interacting with HSPA8/HSC70 and enhancing substrate degradation in PCa. Elevation of TPD52 is essential for CMA-induced PCa cell proliferation and stress resistance in vitro and in vivo. Furthermore, TPD52 is acetylated by KAT2B at K163, which is a process that can be antagonized by HDAC2. Inactivation of HDAC2 results in elevated TPD52 acetylation, which compromises the interaction between TPD52 and HSPA8, leading to impaired CMA function and tumor growth in vivo. Taken together, our findings reveal that acetylation-dependent regulation of TPD52 modulates CMA oncogenic function in PCa, thereby suggesting the possibility of targeting the TPD52-mediated CMA pathway to control the progression of PCa.Abbreviations: CMA: chaperone-mediated autophagy; HDAC2: histone deacetylase 2; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; KAT2B: lysine acetyltransferase 2B; LAMP2A: lysosomal associated membrane protein 2A; PCa: prostate cancer; TPD52: tumor protein D52.
    Keywords:  Chaperone-mediated autophagy; HDAC2; HSPA8; KAT2B; TPD52 isoform 1; prostate cancer
    DOI:  https://doi.org/10.1080/15548627.2021.1917130
  49. JCI Insight. 2021 Jun 08. pii: 144920. [Epub ahead of print]6(11):
      Using genetically engineered mouse models, this work demonstrates that protein synthesis is essential for efficient urothelial cancer formation and growth but dispensable for bladder homeostasis. Through a candidate gene analysis for translation regulators implicated in this dependency, we discovered that phosphorylation of the translation initiation factor eIF4E at serine 209 is increased in both murine and human bladder cancer, and this phosphorylation corresponds with an increase in de novo protein synthesis. Employing an eIF4E serine 209 to alanine knock-in mutant mouse model, we show that this single posttranslational modification is critical for bladder cancer initiation and progression, despite having no impact on normal bladder tissue maintenance. Using murine and human models of advanced bladder cancer, we demonstrate that only tumors with high levels of eIF4E phosphorylation are therapeutically vulnerable to eFT508, the first clinical-grade inhibitor of MNK1 and MNK2, the upstream kinases of eIF4E. Our results show that phospho-eIF4E plays an important role in bladder cancer pathogenesis, and targeting its upstream kinases could be an effective therapeutic option for bladder cancer patients with high levels of eIF4E phosphorylation.
    Keywords:  Mouse models; Oncology; Translation; Urology
    DOI:  https://doi.org/10.1172/jci.insight.144920
  50. Hepatology. 2021 May 28.
      BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and thus the key downstream effectors of this pathway remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signalling in ICC that could open new therapeutic opportunities.APPROACH AND RESULTS: Using loss- and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumours, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 via all-trans retinoic acid (ATRA), an FDA-approved drug, impairs the growth of both cultured and xenografted ICC cells.
    CONCLUSIONS: Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation via PIN1 inhibition.
    Keywords:  bile duct cancer; cancer; oncogenes; post-translational modification; ubiquitin
    DOI:  https://doi.org/10.1002/hep.31983
  51. Protein Sci. 2021 May 24.
      Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N-terminal ubiquitin-like (UBL) and C-terminal ubiquitin-associated (UBA) domains, respectively. Between these two folded domains are low complexity STI1-I and STI1-II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1-II region enables UBQLN2 to undergo liquid-liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically-disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using NMR spectroscopy. To our surprise, aside from well-studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1-I and residues 555-570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2. This article is protected by copyright. All rights reserved.
    Keywords:  NMR spectroscopy; STI1 domain; Ubiquilin-2; Ubiquitin-associated domain; Ubiquitin-like domain; folded domains; intrinsically disordered regions; liquid-liquid phase separation; self-association
    DOI:  https://doi.org/10.1002/pro.4128
  52. Nat Commun. 2021 May 24. 12(1): 3058
      De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.
    DOI:  https://doi.org/10.1038/s41467-021-23123-x
  53. FEBS J. 2021 May 29.
      O-linked modification of nuclear and cytosolic proteins with monosaccharides is essential in all eukaryotes. While many aspects of this post-translational modification are highly conserved, there are striking differences between plants and the animal kingdom. In animals, dynamic cycling of O-GlcNAc is established by two essential single copy enzymes, the O-GlcNAc transferase OGT and O-GlcNAc hydrolase OGA. In contrast, plants balance O-GlcNAc with O-fucose modifications, catalysed by the OGT SECRET AGENT (SEC) and the Protein O-Fucosyltransferase (POFUT) SPINDLY (SPY). However, specific glycoside hydrolases for either of the two modifications have not yet been identified. Nucleocytoplasmic O-glycosylation is still not very well understood in plants, even though a high number of proteins were found to be affected. One important open question is how specificity is established in a system where only two enzymes modify hundreds of proteins. Here, we discuss the possibility that O-GlcNAc and O-fucose binding proteins could introduce an additional flexible layer of regulation in O-glycosylation-mediated signaling pathways, with the potential of integrating internal or external signals.
    Keywords:  O-GlcNAc; O-fucose; O-glycosylation; plants; signaling
    DOI:  https://doi.org/10.1111/febs.16038
  54. J Cell Sci. 2021 May 26. pii: jcs.253781. [Epub ahead of print]
      In Saccharomyces cerevisiae, the selective autophagic degradation of mitochondria, termed mitophagy, is critically regulated by the adapter protein, Atg32. Despite our knowledge about the molecular mechanisms by which Atg32 controls mitophagy, its physiological roles in yeast survival and fitness remains less clear. Here, we demonstrate a requirement for Atg32 in promoting spermidine production during respiratory growth and heat-induced mitochondrial stress. During respiratory growth, mitophagy-deficient yeast exhibit profound heat-stress induced defects in growth and viability due to impaired biosynthesis of spermidine and its biosynthetic precursor S-Adenosyl-Methionine (SAM). Moreover, spermidine production is crucial for the induction of cytoprotective nitric oxide (NO) during heat stress. Hence, the re-addition of spermidine to Atg32 mutant yeast is sufficient to both enhance NO production and restore respiratory growth during heat stress. Our findings uncover a previously unrecognized physiological role for yeast mitophagy in spermidine metabolism and illuminate new interconnections between mitophagy, polyamine biosynthesis and NO signaling.
    Keywords:  ATG32; Autophagy; Mitophagy; Nitric Oxide; S-Adenosyl-Methionine; Spermidine
    DOI:  https://doi.org/10.1242/jcs.253781
  55. Proc Natl Acad Sci U S A. 2021 Jun 15. pii: e2101161118. [Epub ahead of print]118(24):
      The ongoing COVID-19 pandemic has caused an unprecedented global health crisis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Subversion of host protein synthesis is a common strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to shut down host protein synthesis and that SARS-CoV-2 nonstructural protein NSP14 exerts this activity. We show that the translation inhibition activity of NSP14 is conserved in human coronaviruses. NSP14 is required for virus replication through contribution of its exoribonuclease (ExoN) and N7-methyltransferase (N7-MTase) activities. Mutations in the ExoN or N7-MTase active sites of SARS-CoV-2 NSP14 abolish its translation inhibition activity. In addition, we show that the formation of NSP14-NSP10 complex enhances translation inhibition executed by NSP14. Consequently, the translational shutdown by NSP14 abolishes the type I interferon (IFN-I)-dependent induction of interferon-stimulated genes (ISGs). Together, we find that SARS-CoV-2 shuts down host innate immune responses via a translation inhibitor, providing insights into the pathogenesis of SARS-CoV-2.
    Keywords:  NSP14; coronavirus; immune evasion; innate immunity; translation inhibition
    DOI:  https://doi.org/10.1073/pnas.2101161118
  56. Cell Chem Biol. 2021 May 11. pii: S2451-9456(21)00211-7. [Epub ahead of print]
      The proteolysis-targeting chimeras (PROTACs) are a new technology to degrade target proteins. However, their clinical application is limited currently by lack of chemical binders to target proteins. For instance, it is still unknown whether splicing factor 3B subunit 1 (SF3B1) is targetable by PROTACs. We recently identified a 2-aminothiazole derivative (herein O4I2) as a promoter in the generation of human pluripotent stem cells. In this work, proteomic analysis on the biotinylated O4I2 revealed that O4I2 targeted SF3B1 and positively regulated RNA splicing. Fusing thalidomide-the ligand of the cereblon ubiquitin ligase-to O4I2 led to a new PROTAC-O4I2, which selectively degraded SF3B1 and induced cellular apoptosis in a CRBN-dependent manner. In a Drosophila intestinal tumor model, PROTAC-O4I2 increased survival by interference with the maintenance and proliferation of stem cell. Thus, our finding demonstrates that SF3B1 is PROTACable by utilizing noninhibitory chemicals, which expands the list of PROTAC target proteins.
    Keywords:  CRBN; PROTAC; SF3B1 inhibitor; chemically induced protein-protein interaction; molecular degrader; proteomics; proximity-based drug; splicing factor 3B1; targeted protein degradation; thalidomide
    DOI:  https://doi.org/10.1016/j.chembiol.2021.04.018
  57. Cell Rep. 2021 May 25. pii: S2211-1247(21)00495-2. [Epub ahead of print]35(8): 109153
      The ATPase p97 is a central component of the ubiquitin-proteasome degradation system. p97 uses its ATPase activity and co-factors to extract ubiquitinated substrates from different cellular locations, including DNA lesions, thereby regulating DNA repair pathway choice. Here, we find that p97 physically and functionally interacts with the MRE11-RAD50-NBS1 (MRN) complex on chromatin and that inactivation of p97 blocks the disassembly of the MRN complex from the sites of DNA damage upon ionizing radiation (IR). The inhibition of p97 function results in excessive 5'-DNA end resection mediated by MRE11 that leads to defective DNA repair and radiosensitivity. In addition, p97 inhibition by the specific small-molecule inhibitor CB-5083 increases tumor cell killing following IR both in vitro and in vivo. Mechanistically, this is mediated via increased MRE11 nuclease accumulation. This suggests that p97 inhibitors might be exploited to improve outcomes for radiotherapy patients.
    Keywords:  CB-5083; DNA damage; DNA double-strand break repair; IR; MRE11; bladder cancer; homologous recombination; ionizing radiation; p97; single-strand annealing
    DOI:  https://doi.org/10.1016/j.celrep.2021.109153
  58. Hepatol Commun. 2021 May;5(5): 830-845
      We aimed to identify a microRNA (miRNA)-E3 ubiquitin ligase regulatory network for protein substrates enriched in cell death pathways and investigate the underlying molecular mechanisms in alcohol-associated hepatitis (AH). An miRNA-E3 ubiquitin ligase regulatory network for protein substrates enriched in cell death pathways was constructed using integrated bioinformatics analysis. Differentially expressed hub miRNAs (GSE59492) and their validated miRNA target genes (GSE28619) were identified in the liver of patients with AH compared with healthy controls. Liver samples from patients with AH and healthy individuals and mice exposed to Gao-binge (acute on chronic) ethanol were used for experimental validation. Using hub miRNAs identified by weighted correlation network analysis, a miRNA-E3 ubiquitin ligase regulatory network was established based on 17 miRNAs and 7 E3 ligase genes targeted by these miRNAs that were down-regulated in AH. Among the miRNAs in this regulatory network, miR-150-5p was the only miRNA regulating the E3 ligase cytokine-inducible SH2 containing protein (CISH), the E3 ligase that regulates the largest number of substrates among all E3 ligase family members. Therefore, the CISH regulatory pathway for ubiquitinated substrates was selected for subsequent experimental validation. Consistent with the bioinformatics analysis results, expression of miR-150-5p was markedly increased, while CISH was decreased, in the livers of patients with AH and mice exposed to Gao-binge ethanol. Moreover, ubiquitination of Fas-associated protein with death domain, a predicted CISH substrate involved in the regulation of programmed cell death, was reduced in livers from mice after Gao-binge ethanol. Conclusion: Identification of the miRNA-E3 ubiquitin ligase regulatory network for protein substrates enriched in the cell death pathways provides insights into the molecular mechanisms contributing to hepatocyte death in AH.
    DOI:  https://doi.org/10.1002/hep4.1677
  59. PLoS Biol. 2021 May 25. 19(5): e3001263
      We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.
    DOI:  https://doi.org/10.1371/journal.pbio.3001263