bims-proteo Biomed News
on Proteostasis
Issue of 2021‒04‒11
thirty-four papers selected by
Eric Chevet

  1. Annu Rev Biochem. 2021 Apr 06.
      Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see for revised estimates.
  2. Aging (Albany NY). 2021 Apr 04. 13
      Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved developmental program that has been implicated in tumorigenesis and confers metastatic properties upon cancer cells. ZEB1 is a master transcription factor that activates the EMT process in various cancers. ZEB1 is reportedly degraded through the ubiquitin proteasome pathway, but the underlying molecular mechanism of this process remains largely unknown in hepatocellular carcinoma (HCC). Here, we identified ZEB1 as a substrate of the CRL4-DCAF15 (DDB1 and CUL4 associated factor 15) E3 ubiquitin ligase complex. DCAF15 acts as an adaptor that specifically recognizes the N-terminal zinc finger domain of ZEB1, then triggers its degradation via the ubiquitin-proteasome pathway. DCAF15 knockdown led to upregulation of ZEB1 and activation of EMT, whereas overexpression of DCAF15 suppressed ZEB1 and inhibited EMT. DCAF15 knockdown also promoted HCC cell proliferation and invasion in a ZEB1-dependent manner. In HCC patients, low DCAF15 expression was predictive of an unfavorable prognosis. These findings reveal the distinct molecular mechanism by which DCAF15 suppresses HCC malignancy and provides insight into the relationship between the CUL4-DCAF15 E3 ubiquitin ligase complex and ZEB1 in HCC.
    Keywords:  DCAF15; ZEB1; epithelial-mesenchymal transition; hepatocellular carcinoma; ubiquitination
  3. Annu Rev Biochem. 2021 Apr 06.
      Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision making. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see for revised estimates.
  4. Cell Chem Biol. 2021 Mar 31. pii: S2451-9456(21)00148-3. [Epub ahead of print]
      Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
    Keywords:  E1; E2; E3; HECT; RBR; RING; RING-Cys-Relay; activity-based probe; thioester; ubiquitin; ubiquitin activating enzyme; ubiquitin conjugating enzyme; ubiquitin ligase
  5. Mol Biol Cell. 2021 Apr 07. mbcE20060409
      The endoplasmic reticulum (ER) is comprised of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in non-neuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, non-neuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced formation of unbranched, long tubules or dense globular structures comprised of heavily branched narrow tubules. In both cases, tubules were non-motile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region (LIR) also led to the reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
  6. Biochem Biophys Res Commun. 2021 Apr 06. pii: S0006-291X(21)00562-3. [Epub ahead of print]556 9-15
      Lysosome-associated protein transmembrane 4α (LAPTM4α) is a four transmembrane-spanning protein primarily localized in endosomes and lysosomes and has several putative lysosomal targeting signals at its C-terminal cytoplasmic domain, including tyrosine-based motifs (YxxΦ) and PY motifs (L/PxxY). LAPTM4α has been previously shown to be ubiquitinated by the E3 ubiquitin ligase Nedd4-1 through binding to its PY motifs and sorted to lysosomes, however, the molecular mechanisms underlying the localization of LAPTM4α to endosomes/lysosomes have not yet been fully elucidated. In the present study, we show that LAPTM4α binds Nedd4-1 in a manner dependent on PY motifs, while the PY motifs and Nedd4-1 are not necessarily required for LAPTM4α ubiquitination. The binding of LAPTM4α with Nedd4-1, however, is necessary for an effective sorting of LAPTM4α from the Golgi to late endosomes/lysosomes. An unexpected finding is that LAPTM4α is localized in the lumen, but not in the limiting membrane, of late endosomes, and degraded in lysosomes over time. Interestingly, we further found that siRNA knockdown of endosomal sorting complexes required for transport (ESCRT) components that mediate sorting of ubiquitinated membrane proteins into intralumenal vesicles (ILVs) of endosomes selectively blocks the transport of LAPTM4α to endosomes. Collectively, these results suggest that trafficking of LAPTM4α from the Golgi to endosomes is promoted by the interaction with Nedd4-1, which further requires ESCRT components. Furthermore, our findings highlight a novel function for ESCRT proteins in mediating protein and/or vesicle trafficking from the Golgi to endosomes/lysosomes.
    Keywords:  ESCRT; Lysosomal membrane; Nedd4-1; Ubiquitination
  7. Genes Immun. 2021 Apr 06.
      The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-β signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.
  8. Mol Biol Cell. 2021 Apr 07. mbcE20090590
      Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain-containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs co-localize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER-LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER-LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a more general role in linking tubular ER to organelle contact sites. [Media: see text] [Media: see text].
  9. FEBS J. 2020 Dec 05.
      CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.
    Keywords:  CD4+ T cell; MHC‐II; antigen presentation; influenza A virus; macroautophagy
  10. Nat Cell Biol. 2021 Apr;23(4): 330-340
      Biomolecular condensates (biocondensates) formed via liquid-liquid phase-separation of soluble proteins have been studied extensively. However, neither the phase-separation of endoplasmic reticulum (ER) transmembrane protein nor a biocondensate with organized membranous structures has been reported. Here, we have discovered a spherical ER membranous biocondensate with puzzle-like structures caused by condensation of the ER-resident stimulator of interferon genes (STING) in DNA virus-infected or 2'3'-cGAMP (cyclic GMP-AMP)-treated cells, which required STING transmembrane domains, an intrinsically disordered region (IDR) and a dimerization domain. Intracellular 2'3'-cGAMP concentrations determined STING translocation or condensation. STING biocondensates constrained STING and TBK1 (TANK binding protein 1) to prevent innate immunity from overactivation, presumably acting like a 'STING-TBK1-cGAMP sponge'. Cells expressing STING-E336G/E337G showed notably enhanced innate immune responses due to impaired STING condensation after viral infection at later stages. Microtubule inhibitors impeded the STING condensate gel-like transition and augmented type I-interferon production in DNA virus-infected cells. This membranous biocondensate was therefore named the STING phase-separator.
  11. Nat Commun. 2021 04 06. 12(1): 2061
      Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains.
  12. Front Plant Sci. 2021 ;12 640193
      Plants are unable to physically escape environmental constraints and have, therefore, evolved a range of molecular and physiological mechanisms to maximize survival in an ever-changing environment. Among these, the post-translational modification of ubiquitination has emerged as an important mechanism to understand and improve the stress response. The ubiquitination of a given protein can change its abundance (through degradation), alter its localization, or even modulate its activity. Hence, ubiquitination increases the plasticity of the plant proteome in response to different environmental cues and can contribute to improve stress tolerance. Although ubiquitination is mediated by different enzymes, in this review, we focus on the importance of E3-ubiquitin ligases, which interact with the target proteins and are, therefore, highly associated with the mechanism specificity. We discuss their involvement in abiotic stress response and place them as putative candidates for ubiquitination-based development of stress-tolerant crops. This review covers recent developments in this field using rice as a reference for crops, highlighting the questions still unanswered.
    Keywords:  cold; drought; heat; proteasome; salinity; ubiquitination
  13. Front Cell Dev Biol. 2021 ;9 634003
      Lymphocyte homeostasis, activation and differentiation crucially rely on basal autophagy. The fine-tuning of this process depends on autophagy-related (ATG) proteins and their interaction with the trafficking machinery that orchestrates the membrane rearrangements leading to autophagosome biogenesis. The underlying mechanisms are as yet not fully understood. The intraflagellar transport (IFT) system, known for its role in cargo transport along the axonemal microtubules of the primary cilium, has emerged as a regulator of autophagy in ciliated cells. Growing evidence indicates that ciliogenesis proteins participate in cilia-independent processes, including autophagy, in the non-ciliated T cell. Here we investigate the mechanism by which IFT20, an integral component of the IFT system, regulates basal T cell autophagy. We show that IFT20 interacts with the core autophagy protein ATG16L1 and that its CC domain is essential for its pro-autophagic activity. We demonstrate that IFT20 is required for the association of ATG16L1 with the Golgi complex and early endosomes, both of which have been identified as membrane sources for phagophore elongation. This involves the ability of IFT20 to interact with proteins that are resident at these subcellular localizations, namely the golgin GMAP210 at the Golgi apparatus and Rab5 at early endosomes. GMAP210 depletion, while leading to a dispersion of ATG16L1 from the Golgi, did not affect basal autophagy. Conversely, IFT20 was found to recruit ATG16L1 to early endosomes tagged for autophagosome formation by the BECLIN 1/VPS34/Rab5 complex, which resulted in the local accumulation of LC3. Hence IFT20 participates in autophagosome biogenesis under basal conditions by regulating the localization of ATG16L1 at early endosomes to promote autophagosome biogenesis. These data identify IFT20 as a new regulator of an early step of basal autophagy in T cells.
    Keywords:  ATG16L1; T cell; autophagy; early endosomes; intraflagellar transport; vesicular trafficking
  14. Biochemistry (Mosc). 2021 Jan;86(Suppl 1): S71-S95
      Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
    Keywords:  DNA damage response; E3 ubiquitin ligase; RING E3 ligase family; histone; post-translational modification; protein–protein interactions; ubiquitination
  15. Proc Natl Acad Sci U S A. 2021 Mar 16. pii: e2018127118. [Epub ahead of print]118(11):
      Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
    Keywords:  TRiC; molecular chaperones; prefoldin; protein folding; virus assembly
  16. Elife. 2021 Apr 07. pii: e62591. [Epub ahead of print]10
      Eukaryotes compartmentalize metabolic pathways into sub-cellular domains, but the role of inter-organelle contacts in organizing metabolic reactions remains poorly understood. Here, we show that in response to acute glucose restriction (AGR) yeast undergo metabolic remodeling of their mevalonate pathway that is spatially coordinated at nucleus-vacuole junctions (NVJs). The NVJ serves as a metabolic platform by selectively retaining HMG-CoA Reductases (HMGCRs), driving mevalonate pathway flux in an Upc2-dependent manner. Both spatial retention of HMGCRs and increased mevalonate pathway flux during AGR is dependent on NVJ tether Nvj1. Furthermore, we demonstrate that HMGCRs associate into high molecular weight assemblies during AGR in an Nvj1-dependent manner. Loss of Nvj1-mediated HMGCR partitioning can be bypassed by artificially multimerizing HMGCRs, indicating NVJ compartmentalization enhances mevalonate pathway flux by promoting the association of HMGCRs in high molecular weight assemblies. Loss of HMGCR compartmentalization perturbs yeast growth following glucose starvation, indicating it promotes adaptive metabolic remodeling. Collectively we propose a non-canonical mechanism regulating mevalonate metabolism via the spatial compartmentalization of rate-limiting HMGCR enzymes at an inter-organelle contact site.
    Keywords:  S. cerevisiae; cell biology
  17. Pharmacol Ther. 2021 Apr 03. pii: S0163-7258(21)00050-4. [Epub ahead of print] 107848
      Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
    Keywords:  Adaptive autophagy; Cell death; Cerebral I/R injury; Ischemic stroke; Maladaptive autophagy
  18. Structure. 2021 Mar 31. pii: S0969-2126(21)00086-1. [Epub ahead of print]
      The first stage of the eukaryotic secretory pathway is the packaging of cargo proteins into coat protein complex II (COPII) vesicles exiting the ER. The cytoplasmic COPII vesicle coat machinery is recruited to the ER membrane by the activated, GTP-bound, form of the conserved Sar1 GTPase. Activation of Sar1 on the surface of the ER by Sec12, a membrane-anchored GEF (guanine nucleotide exchange factor), is therefore the initiating step of the secretory pathway. Here we report the structure of the complex between Sar1 and the cytoplasmic GEF domain of Sec12, both from Saccharomyces cerevisiae. This structure, representing a key nucleotide-free activation intermediate, reveals how the potassium ion-binding K loop disrupts the nucleotide-binding site of Sar1. We propose an unexpected orientation of the GEF domain relative to the membrane surface and postulate a mechanism for how Sec12 facilitates membrane insertion of the amphipathic helix exposed by Sar1 upon GTP binding.
    Keywords:  COPII; Endoplasmic reticulum; GEF; GTPase; Sar1; Sec12; trafficking; vesicle
  19. Sci Adv. 2021 Apr;pii: eabg4544. [Epub ahead of print]7(15):
      The serine/threonine kinase ULK1 mediates autophagy initiation in response to various cellular stresses, and genetic deletion of ULK1 leads to accumulation of damaged mitochondria. Here we identify Parkin, the core ubiquitin ligase in mitophagy, and PARK2 gene product mutated in familial Parkinson's disease, as a ULK1 substrate. Recent studies uncovered a nine residue ("ACT") domain important for Parkin activation, and we demonstrate that AMPK-dependent ULK1 rapidly phosphorylates conserved serine108 in the ACT domain in response to mitochondrial stress. Phosphorylation of Parkin Ser108 occurs maximally within five minutes of mitochondrial damage, unlike activation of PINK1 and TBK1, which is observed thirty to sixty minutes later. Mutation of the ULK1 phosphorylation sites in Parkin, genetic AMPK or ULK1 depletion, or pharmacologic ULK1 inhibition, all lead to delays in Parkin activation and defects in assays of Parkin function and downstream mitophagy events. These findings reveal an unexpected first step in the mitophagy cascade.
  20. Front Immunol. 2021 ;12 635475
      Nuclear dot protein 52 kDa (NDP52, also known as CALCOCO2) functions as a selective autophagy receptor. The linear ubiquitin chain assembly complex (LUBAC) specifically generates the N-terminal Met1-linked linear ubiquitin chain, and regulates innate immune responses, such as nuclear factor-κB (NF-κB), interferon (IFN) antiviral, and apoptotic pathways. Although NDP52 and LUBAC cooperatively regulate bacterial invasion-induced xenophagy, their functional crosstalk remains enigmatic. Here we show that NDP52 suppresses canonical NF-κB signaling through the broad specificity of ubiquitin-binding at the C-terminal UBZ domain. Upon TNF-α-stimulation, NDP52 associates with LUBAC through the HOIP subunit, but does not disturb its ubiquitin ligase activity, and has a modest suppressive effect on NF-κB activation by functioning as a component of TNF-α receptor signaling complex I. NDP52 also regulates the TNF-α-induced apoptotic pathway, but not doxorubicin-induced intrinsic apoptosis. A chemical inhibitor of LUBAC (HOIPIN-8) cancelled the increased activation of the NF-κB and IFN antiviral pathways, and enhanced apoptosis in NDP52-knockout and -knockdown HeLa cells. Upon Salmonella-infection, colocalization of Salmonella, LC3, and linear ubiquitin was detected in parental HeLa cells to induce xenophagy. Treatment with HOIPIN-8 disturbed the colocalization and facilitated Salmonella expansion. In contrast, HOIPIN-8 showed little effect on the colocalization of LC3 and Salmonella in NDP52-knockout cells, suggesting that NDP52 is a weak regulator in LUBAC-mediated xenophagy. These results indicate that the crosstalk between NDP52 and LUBAC regulates innate immune responses, apoptosis, and xenophagy.
    Keywords:  LUBAC; NDP52; NF-κB; apoptosis; ubiquitin; xenophagy
  21. J Biol Regul Homeost Agents. 2021 Apr 07. 35(2):
      Diet pattern is an emerging risk factor for renal disease. The mechanism by which high-fat high fructose (western) diet mediates renal injury is not yet fully understood. The objective of the present study was to investigate the relationship between endoplasmic reticulum (ER) stress and autophagy in the development of renal impairment and aggravation of the inflammatory response. Eighty male rats were randomly divided into four groups as follows: a standard diet-fed (ConD), a high-fat high fructose diet fed (HFHF-V), ConD fed and orally supplemented with vitamin E (ConD-E), and HFHF fed and orally supplemented vitamin E (HFHF-E). After 12 weeks, either lipopolysaccharide (LPS) or saline was injected. We found that upregulation of endoplasmic reticulum stress-related proteins rendered the cells susceptible to injury induced by dysbiosis and microbiota-derived metabolites. A downregulation of autophagy and upregulation of caspase-12 resulted in the loss of intestinal integrity and renal tubular injury. Maintained ER stress also increased the inflammatory response to LPS. In contrast, vitamin E effectively ameliorated ER stress and promoted autophagy to protect intestinal and renal tissues. Our results provide insight into the influences of sustained ER stress activation and autophagy inhibition on the development of renal injury, which may contribute also to the enhanced inflammatory response.
    Keywords:  NFκB; apoptosis; autophagy; endoplasmic reticulum stress; kidney disease
  22. Cell Chem Biol. 2021 Apr 01. pii: S2451-9456(21)00150-1. [Epub ahead of print]
      Many diseases, including cancer, stem from aberrant activation or overexpression of oncoproteins that are associated with multiple signaling pathways. Although proteins with catalytic activity can be successfully drugged, the majority of other protein families, such as transcription factors, remain intractable due to their lack of ligandable sites. In this study, we report the development of TRAnscription Factor TArgeting Chimeras (TRAFTACs) as a generalizable strategy for targeted transcription factor degradation. We show that TRAFTACs, which consist of a chimeric oligonucleotide that simultaneously binds to the transcription factor of interest (TOI) and to HaloTag-fused dCas9 protein, can induce degradation of the former via the proteasomal pathway. Application of TRAFTACs to two oncogenic TOIs, NF-κB and brachyury, suggests that TRAFTACs can be successfully employed for the targeted degradation of other DNA-binding proteins. Thus, TRAFTAC technology is potentially a generalizable strategy to induce degradation of other transcription factors both in vitro and in vivo.
    Keywords:  E3 ligase; HaloTag; PROTACs; brachyury; dCas9; degradation; proteasome; transcription factors; undruggable; zebrafish
  23. PLoS Genet. 2021 Apr 05. 17(4): e1009275
      Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.
  24. Cell Signal. 2021 Apr 03. pii: S0898-6568(21)00090-5. [Epub ahead of print] 110002
      Yes-associated protein (YAP) is a vital transcriptional co-activator that activates cell proliferation and evasion of apoptosis for the promotion of tumorigenesis. The von Hippel-Lindau tumor suppressor protein (pVHL), as a critical component of E3 ubiquitin ligase, targets various substrates to regulate tumor progression. However, the precise molecular mechanisms of pVHL during tumorigenesis remain largely unclear. Herein, we found that there was a significant negative correlation between pVHL and YAP at protein level in the TCGA-LUAD dataset and our cohort. Over-expression of pVHL decreased YAP protein expression and reduced its transcriptional activity. Further study indicated that pVHL did not affect YAP mRNA level but decreased YAP protein stability in a lysosome-dependent manner. In addition, the pVHL-mediated degradation of YAP inhibited cellular proliferation, migration, and enhanced chemosensitivity to cisplatin in lung adenocarcinoma cells. Interestingly, the pVHL-mediated YAP degradation was blocked by elevated O-GlcNAcylation. Collectively, our findings demonstrate that pVHL modulates the lysosomal degradation of YAP, and may provide more clues to better understanding the tumor suppressive effects of pVHL.
    Keywords:  Lung adenocarcinoma; Lysosomal degradation; O-GlcNAcylation; YAP; pVHL
  25. J Biol Chem. 2021 Feb 16. pii: S0021-9258(21)00061-2. [Epub ahead of print]296 100293
    Keywords:  Chaperone code; Co-chaperones; Extracellular chaperones; HSF1; Hsp70; Hsp90; Post-translational modifications; TRAP1
  26. Nat Commun. 2021 04 06. 12(1): 2043
      The tumour suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), that targets several oncoproteins for proteasomal degradation. FBW7 is widely mutated and FBW7 protein levels are commonly downregulated in cancer. Here, using an shRNA library screen, we identify the HECT-domain E3 ubiquitin ligase TRIP12 as a negative regulator of FBW7 stability. We find that SCFFBW7-mediated ubiquitylation of FBW7 occurs preferentially on K404 and K412, but is not sufficient for its proteasomal degradation, and in addition requires TRIP12-mediated branched K11-linked ubiquitylation. TRIP12 inactivation causes FBW7 protein accumulation and increased proteasomal degradation of the SCFFBW7 substrate Myeloid Leukemia 1 (MCL1), and sensitizes cancer cells to anti-tubulin chemotherapy. Concomitant FBW7 inactivation rescues the effects of TRIP12 deficiency, confirming FBW7 as an essential mediator of TRIP12 function. This work reveals an unexpected complexity of FBW7 ubiquitylation, and highlights branched ubiquitylation as an important signalling mechanism regulating protein stability.
  27. Cell Rep. 2021 Apr 06. pii: S2211-1247(21)00250-3. [Epub ahead of print]35(1): 108936
      Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.
    Keywords:  Tom70; chaperones; mitochondria; outer membrane; protein translocation; proteostasis; prototoxicity
  28. Haematologica. 2021 Apr 08.
      Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
  29. Cell Mol Life Sci. 2021 Apr 07.
      Infection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.
    Keywords:  Bacteria; Cancer; E3 ubiquitin ligases; Inflammation; MDM2; NF-κB; T4SS; p53; β-catenin
  30. J Mol Biol. 2021 Mar 31. pii: S0022-2836(21)00164-9. [Epub ahead of print] 166963
      While cytosolic Hsp90 chaperones have been extensively studied, less is known about how the ER Hsp90 paralog Grp94 recognizes clients and influences client folding. Here, we examine how Grp94 and the ER Hsp70 paralog, BiP, influence the folding of insulin-like growth factor 2 (IGF2), an established client protein of Grp94. ProIGF2 is composed of a disulfide-bonded insulin-like hormone and a C-terminal E-peptide that has sequence characteristics of an intrinsically disordered region. BiP and Grp94 have a minimal influence on folding whereby both chaperones slow proIGF2 folding and do not substantially alter the disulfide-bonded folding intermediates, suggesting that BiP and Grp94 may have an additional influence unrelated to proIGF2 folding. Indeed, we made the unexpected discovery that the E-peptide region allows proIGF2 to form dynamic oligomers. ProIGF2 oligomers can transition from a dynamic state that is capable of exchanging monomers to an irreversibly aggregated state, providing a plausible role for BiP and Grp94 in regulating proIGF2 oligomerization. In contrast to the modest influence on folding, BiP and Grp94 have a stronger influence on proIGF2 oligomerization and these chaperones exert counteracting effects. BiP suppresses proIGF2 oligomerization while Grp94 can enhance proIGF2 oligomerization in a nucleotide-dependent manner. We propose that BiP and Grp94 regulate the assembly and dynamic behavior of proIGF2 oligomers, although the biological role of proIGF2 oligomerization is not yet known.
  31. Plant Cell. 2020 Nov 02. 32(11): 3559-3575
      The unfolded protein response (UPR) and the heat shock response (HSR) are two evolutionarily conserved systems that protect plants from heat stress. The UPR and HSR occur in different cellular compartments and both responses are elicited by misfolded proteins that accumulate under adverse environmental conditions such as heat stress. While the UPR and HSR appear to operate independently, we have found a link between them in maize (Zea mays) involving the production of the BASIC LEUCINE ZIPPER60 (bZIP60) transcription factor, a pivotal response of the UPR to heat stress. Surprisingly, a mutant (bzip60-2) knocking down bZIP60 expression blunted the HSR at elevated temperatures and prevented the normal upregulation of a group of heat shock protein genes in response to elevated temperature. The expression of a key HEAT SHOCK FACTOR TRANSCRIPTION FACTOR13 (HSFTF13, a HEAT SHOCK FACTOR A6B [HSFA6B] family member) was compromised in bzip60-2, and the HSFTF13 promoter was shown to be a target of bZIP60 in maize protoplasts. In addition, the upregulation by heat of genes involved in chlorophyll catabolism and chloroplast protein turnover were subdued in bzip60-2, and these genes were also found to be targets of bZIP60. Thus, the UPR, an endoplasmic-reticulum-associated response, quite unexpectedly contributes to the nuclear/cytoplasmic HSR in maize.
  32. Cell Chem Biol. 2021 Mar 29. pii: S2451-9456(21)00146-X. [Epub ahead of print]
      The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
    Keywords:  CRISPR-Cas9; PROTAC; functional genomics; molecular glue degrader; phenotypic screens; proteomics; target identification; targeted protein degradation
  33. Acta Neuropathol Commun. 2021 Apr 08. 9(1): 65
      The microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others' have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis. We have found two co-chaperones of the 90 kDa heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and the activator of Hsp90 ATPase homolog 1 (Aha1), promote tau aggregation in vitro and in the brains of tau transgenic mice. Based on this, we hypothesized that increased levels of these chaperones could promote tau misfolding and accumulation in the brains of aged wild-type mice. We tested this hypothesis by overexpressing Aha1, FKBP52, or mCherry (control) proteins in the hippocampus of 9-month-old wild-type mice. After 7 months of expression, mice were evaluated for cognitive and pathological changes. Our results show that FKBP52 overexpression impaired spatial reversal learning, while Aha1 overexpression impaired associative learning in aged wild-type mice. FKBP52 and Aha1 overexpression promoted phosphorylation of distinct AD-relevant tau species. Furthermore, FKBP52 activated gliosis and promoted neuronal loss leading to a reduction in hippocampal volume. Glial activation and phospho-tau accumulation were also detected in areas adjacent to the hippocampus, including the entorhinal cortex, suggesting that after initiation these pathologies can propagate through other brain regions. Overall, our findings suggest a role for chaperone imbalance in the initiation of tau accumulation in the aging brain.
    Keywords:  Aha1; Alzheimer’s disease; FKBP52; Molecular chaperones; Neuroinflammation; Tau
  34. J Crohns Colitis. 2021 Apr 02. pii: jjab061. [Epub ahead of print]
      BACKGROUND AND AIMS: Intestinal fibrosis is a common complication of Crohn's disease (CD). It is characterised by an accumulation of fibroblasts differentiating into myofibroblasts secreting excessive extracellular matrix. The potential role of the intestinal epithelium in this fibrotic process remains poorly defined.METHODS: We performed a pilot proteomic study comparing the proteome of surface epithelium, isolated by laser-capture microdissection, in normal and fibrotic zones of resected ileal CD strictures (13 zones collected in 5 patients). Proteins of interests were validated by immunohistochemistry (IHC) in ileal and colonic samples of stricturing CD (n=44), pure inflammatory CD (n=29) and control (n=40) subjects. The pro-fibrotic role of one selected epithelial protein was investigated through in-vitro experiments using HT-29 epithelial cells and a CCD-18Co fibroblast to myofibroblast differentiation model.
    RESULTS: Proteomic study revealed an endoplasmic reticulum (ER) stress proteins increase in the epithelium of CD ileal fibrotic strictures, including Anterior gradient protein 2 homolog (AGR2) and Binding-immunoglobulin protein (BiP). This was confirmed by IHC. In HT-29 cells, tunicamycin-induced ER stress triggered AGR2 intracellular expression and its secretion. Supernatant of these HT-29 cells, pre-conditioned by tunicamycin, led to a myofibroblastic differentiation when applied on CCD-18Co fibroblasts. By using recombinant protein and blocking agent for AGR2, we demonstrated that the secretion of this protein by epithelial cells can play a role in the myofibroblastic differentiation.
    CONCLUSIONS: The development of CD fibrotic strictures could involve epithelial ER stress and particularly the secretion of AGR2.
    Keywords:  Anterior gradient protein 2 homolog; CD fibrosis; ER stress