bims-proteo Biomed News
on Proteostasis
Issue of 2021‒02‒07
fifty-eight papers selected by
Eric Chevet

  1. Sci Adv. 2021 Jan;pii: eabc6364. [Epub ahead of print]7(3):
    Phoomak C, Cui W, Hayman TJ, Yu SH, Zhao P, Wells L, Steet R, Contessa JN.
      Asparagine (N)-linked glycosylation is required for endoplasmic reticulum (ER) homeostasis, but how this co- and posttranslational modification is maintained during ER stress is unknown. Here, we introduce a fluorescence-based strategy to detect aberrant N-glycosylation in individual cells and identify a regulatory role for the heterotetrameric translocon-associated protein (TRAP) complex. Unexpectedly, cells with knockout of SSR3 or SSR4 subunits restore N-glycosylation over time concurrent with a diminished ER stress transcriptional signature. Activation of ER stress or silencing of the ER chaperone BiP exacerbates or rescues the glycosylation defects, respectively, indicating that SSR3 and SSR4 enable N-glycosylation during ER stress. Protein levels of the SSR3 subunit are ER stress and UBE2J1 dependent, revealing a mechanism that coordinates upstream N-glycosylation proficiency with downstream ER-associated degradation and proteostasis. The fidelity of N-glycosylation is not static in both nontransformed and tumor cells, and the TRAP complex regulates ER glycoprotein quality control under conditions of stress.
  2. PLoS Genet. 2021 Feb 01. 17(2): e1009317
    Zhang Z, Luo S, Barbosa GO, Bai M, Kornberg TB, Ma DK.
      Dysregulation of collagen production and secretion contributes to aging and tissue fibrosis of major organs. How procollagen proteins in the endoplasmic reticulum (ER) route as specialized cargos for secretion remains to be fully elucidated. Here, we report that TMEM39, an ER-localized transmembrane protein, regulates production and secretory cargo trafficking of procollagen. We identify the C. elegans ortholog TMEM-39 from an unbiased RNAi screen and show that deficiency of tmem-39 leads to striking defects in cuticle collagen production and constitutively high ER stress response. RNAi knockdown of the tmem-39 ortholog in Drosophila causes similar defects in collagen secretion from fat body cells. The cytosolic domain of human TMEM39A binds to Sec23A, a vesicle coat protein that drives collagen secretion and vesicular trafficking. TMEM-39 regulation of collagen secretion is independent of ER stress response and autophagy. We propose that the roles of TMEM-39 in collagen secretion and ER homeostasis are likely evolutionarily conserved.
  3. Mol Cell Proteomics. 2019 Jun;pii: S1535-9476(20)31820-X. [Epub ahead of print]18(6): 1197-1209
    Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G.
      Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
    Keywords:  Cell biology*; HIF; HIF-1α; Hypoxia; Mass Spectrometry; Molecular biology*; Post-translational modifications*; SILAC; SUMO; TFAP2A; Transcriptional Regulation*
  4. Int J Mol Sci. 2021 Feb 03. pii: 1526. [Epub ahead of print]22(4):
    Qu J, Zou T, Lin Z.
      The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells, which is essential for synthesis, processing, sorting of protein and lipid metabolism. However, the cells activate a defense mechanism called endoplasmic reticulum stress (ER stress) response and initiate unfolded protein response (UPR) as the unfolded proteins exceed the folding capacity of the ER due to the environmental influences or increased protein synthesis. ER stress can mediate many cellular processes, including autophagy, apoptosis and senescence. The ubiquitin-proteasome system (UPS) is involved in the degradation of more than 80% of proteins in the cells. Today, increasing numbers of studies have shown that the two important components of UPS, E3 ubiquitin ligases and deubiquitinases (DUBs), are tightly related to ER stress. In this review, we summarized the regulation of the E3 ubiquitin ligases and DUBs in ER stress.
    Keywords:  E3 ubiquitin ligases; UPR; UPS; deubiquitinases; endoplasmic reticulum stress (ER stress)
  5. Mol Hum Reprod. 2021 Jan 22. pii: gaaa088. [Epub ahead of print]27(1):
    Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y.
      Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary, activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contributes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development of small molecules that target the UPR, represents a promising therapeutic strategy.
    Keywords:  endometriosis; endoplasmic reticulum stress; follicular microenvironment; granulosa cell; inflammation; oocyte; ovary; oxidative stress; polycystic ovary syndrome; unfolded protein response
  6. J Biol Chem. 2020 Jul 03. pii: S0021-9258(17)50321-X. [Epub ahead of print]295(27): 8972-8987
    Tang X, Zhang L, Ma T, Wang M, Li B, Jiang L, Yan Y, Guo Y.
      Planar cell polarity (PCP) is a process during which cells are polarized along the plane of the epithelium and is regulated by several transmembrane signaling proteins. After their synthesis, these PCP proteins are delivered along the secretory transport pathway to the plasma membrane, where they perform their physiological functions. However, the molecular mechanisms that regulate PCP protein transport remain largely unclear. Here, we found that the delivery of a PCP protein, Frizzled-6, to the cell surface is regulated by two conserved polybasic motifs: one located in its first intracellular loop and the other in its C-terminal cytosolic domain. We observed that the polybasic motif of Frizzled is also important for its surface localization in the Drosophila wing. Results from a mechanistic analysis indicated that Frizzled-6 packaging into vesicles at the endoplasmic reticulum (ER) is regulated by a direct interaction between the polybasic motif and the Glu-62 and Glu-63 residues on the secretion-associated Ras-related GTPase 1A (SAR1A) subunit of coat protein complex II (COPII). Moreover, we found that newly synthesized Frizzled-6 is associated with another PCP protein, cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1), in the secretory transport pathway, and that this association regulates their surface delivery. Our results reveal insights into the molecular machinery that regulates the ER export of Frizzled-6. They also suggest that the association of CELSR1 with Frizzled-6 is important, enabling efficient Frizzled-6 delivery to the cell surface, providing a quality control mechanism that ensures the appropriate stoichiometry of these two PCP proteins at cell boundaries.
    Keywords:  Frizzled class receptor 6 (FZD6); Golgi; cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1); cargo sorting; coat protein complex II (COPII); endoplasmic reticulum (ER); planar cell polarity proteins; polybasic motif; protein sorting; secretion-associated Ras-related GTPase 1A (SAR1A); secretory transport pathway; trafficking; transmembrane signaling; vesicles
  7. Oncogene. 2021 Feb 02.
    Varone E, Decio A, Chernorudskiy A, Minoli L, Brunelli L, Ioli F, Piotti A, Pastorelli R, Fratelli M, Gobbi M, Giavazzi R, Zito E.
      Solid tumors are often characterized by a hypoxic microenvironment which contributes, through the hypoxia-inducible factor HIF-1, to the invasion-metastasis cascade. Endoplasmic reticulum (ER) stress also leads tumor cells to thrive and spread by inducing a transcriptional and translational program, the Unfolded Protein Response (UPR), aimed at restoring ER homeostasis. We studied ERO1 alpha (henceforth ERO1), a protein disulfide oxidase with the tumor-relevant characteristic of being positively regulated by both ER stress and hypoxia. Analysis of the redox secretome indicated that pro-angiogenic HIF-1 targets, were blunted in ERO1-devoid breast cancer cells under hypoxic conditions. ERO1 deficiency reduced tumor cell migration and lung metastases by impinging on tumor angiogenesis, negatively regulating the upstream ATF4/CHOP branch of the UPR and selectively impeding oxidative folding of angiogenic factors, among which VEGF-A. Thus, ERO1 deficiency acted synergistically with the otherwise feeble curative effects of anti-angiogenic therapy in aggressive breast cancer murine models and it might be exploited to treat cancers with pathological HIF-1-dependent angiogenesis. Furthermore, ERO1 levels are higher in the more aggressive basal breast tumors and correlate inversely with the disease- and metastasis-free interval of breast cancer patients. Thus, taking advantage of our in vitro data on ERO1-regulated gene products we identified a gene set associated with ERO1 expression in basal tumors and related to UPR, hypoxia, and angiogenesis, whose levels might be investigated in patients as a hallmark of tumor aggressiveness and orient those with lower levels toward an effective anti-angiogenic therapy.
  8. Cell Death Dis. 2021 Feb 02. 12(2): 136
    Chen ZS, Huang X, Talbot K, Chan HYE.
      Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.
  9. J Biol Chem. 2020 Jul 03. pii: S0021-9258(17)50332-4. [Epub ahead of print]295(27): 9105-9120
    Nagata A, Itoh F, Sasho A, Sugita K, Suzuki R, Hinata H, Shimoda Y, Suzuki E, Maemoto Y, Inagawa T, Fujikawa Y, Ikeda E, Fujii C, Inoue H.
      Modification of the transforming growth factor β (TGF-β) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-β signaling, suggesting that this mode of regulation of TGF-β signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-β signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-βRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-β signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-β signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-β/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-β/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-β/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-β signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.
    Keywords:  DAF-7; SMAD transcription factor; Ubh1; cell signaling; deubiquitylation (deubiquitination); hypoxia; lung cancer; lung carcinoma; post-translational modification (PTM); transforming growth factor β (TGF-β); ubh-1/UCH-L1; ubiquitin C-terminal hydrolase-L1 (UCH-L1)
  10. J Lipid Res. 2020 Dec;pii: S0022-2275(20)60027-X. [Epub ahead of print]61(12): 1675-1686
    De Giorgi M, Jarrett KE, Burton JC, Doerfler AM, Hurley A, Li A, Hsu RH, Furgurson M, Patel KR, Han J, Borchers CH, Lagor WR.
      HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.
    Keywords:  3-hydroxy-3-methylglutaryl-coenzyme A; adeno-associated virus; animal models; cholesterol synthesis and regulation; clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9; dehydrodolichyl diphosphate synthase subunit; dolichol; endoplasmic reticulum; liver
  11. J Biol Chem. 2020 Jan 03. pii: S0021-9258(17)49563-9. [Epub ahead of print]295(1): 237-249
    Hiramatsu N, Chiang K, Aivati C, Rodvold JJ, Lee JM, Han J, Chea L, Zanetti M, Koo EH, Lin JH.
      Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), which reduces levels of misfolded proteins. However, if ER homeostasis is not restored and the UPR remains chronically activated, cells undergo apoptosis. The UPR regulator, PKR-like endoplasmic reticulum kinase (PERK), plays an important role in promoting cell death when persistently activated; however, the underlying mechanisms are poorly understood. Here, we profiled the microRNA (miRNA) transcriptome in human cells exposed to ER stress and identified miRNAs that are selectively induced by PERK signaling. We found that expression of a PERK-induced miRNA, miR-483, promotes apoptosis in human cells. miR-483 induction was mediated by a transcription factor downstream of PERK, activating transcription factor 4 (ATF4), but not by the CHOP transcription factor. We identified the creatine kinase brain-type (CKB) gene, encoding an enzyme that maintains cellular ATP reserves through phosphocreatine production, as being repressed during the UPR and targeted by miR-483. We found that ER stress, selective PERK activation, and CKB knockdown all decrease cellular ATP levels, leading to increased vulnerability to ER stress-induced cell death. Our findings identify miR-483 as a downstream target of the PERK branch of the UPR. We propose that disruption of cellular ATP homeostasis through miR-483-mediated CKB silencing promotes ER stress-induced apoptosis.
    Keywords:  ATP; F1F0-ATPase; PKR-like endoplasmic reticulum kinase (PERK); activating transcription factor-4 (ATF-4); creatine kinase B (CKB); endoplasmic reticulum (ER); endoplasmic reticulum stress (ER stress); fluorescence resonance energy transfer (FRET); microRNA (miRNA); stress response; translation; translation control; unfolded protein response (UPR)
  12. Cell Rep. 2021 Feb 02. pii: S2211-1247(21)00024-3. [Epub ahead of print]34(5): 108711
    Friedrich UA, Zedan M, Hessling B, Fenzl K, Gillet L, Barry J, Knop M, Kramer G, Bukau B.
      N-terminal (Nt) acetylation is a highly prevalent co-translational protein modification in eukaryotes, catalyzed by at least five Nt acetyltransferases (Nats) with differing specificities. Nt acetylation has been implicated in protein quality control, but its broad biological significance remains elusive. We investigate the roles of the two major Nats of S. cerevisiae, NatA and NatB, by performing transcriptome, translatome, and proteome profiling of natAΔ and natBΔ mutants. Our results reveal a range of NatA- and NatB-specific phenotypes. NatA is implicated in systemic adaptation control, because natAΔ mutants display altered expression of transposons, sub-telomeric genes, pheromone response genes, and nuclear genes encoding mitochondrial ribosomal proteins. NatB predominantly affects protein folding, because natBΔ mutants, to a greater extent than natA mutants, accumulate protein aggregates, induce stress responses, and display reduced fitness in the absence of the ribosome-associated chaperone Ssb. These phenotypic differences indicate that controlling Nat activities may serve to elicit distinct cellular responses.
    Keywords:  N-terminal acetylation; NatA; NatB; multi-omics; protein synthesis; ribosome profiling; translation
  13. Cardiovasc Res. 2021 Feb 01. pii: cvab034. [Epub ahead of print]
    Rogers MA, Hutcheson JD, Okui T, Goettsch C, Singh SA, Halu A, Schlotter F, Higashi H, Wang L, Whelan MC, Mlynarchik AK, Daugherty A, Nomura M, Aikawa M, Aikawa E.
      AIMS: Proteostasis maintains protein homeostasis and participates in regulating critical cardiometabolic disease risk factors, including proprotein convertase subtilisin/kexin type 9 (PCSK9). Endoplasmic reticulum (ER) remodeling through release and incorporation of trafficking vesicles mediates protein secretion and degradation. We hypothesized that ER remodeling that drives mitochondrial fission participates in cardiometabolic proteostasis.METHODS AND RESULTS: We used in vitro and in vivo hepatocyte inhibition of a protein involved in mitochondrial fission, dynamin-related protein 1 (DRP1). Here, we show that DRP1 promotes remodeling of select ER microdomains by tethering vesicles at ER. A DRP1 inhibitor, mitochondrial division inhibitor 1 (mdivi-1) reduced ER localization of a DRP1 receptor, mitochondrial fission factor, suppressing ER remodeling-driven mitochondrial fission, autophagy, and increased mitochondrial calcium buffering and PCSK9 proteasomal degradation. DRP1 inhibition by CRISPR/Cas9 deletion or mdivi-1 alone or in combination with statin incubation in human hepatocytes and hepatocyte-specific Drp1-deficiency in mice reduced PCSK9 secretion (-78.5%). In HepG2 cells, mdivi-1 increased low-density lipoprotein receptor via c-Jun transcription and reduced PCSK9 mRNA levels via suppressed sterol regulatory binding protein-1c. Additionally, mdivi-1 reduced macrophage burden, oxidative stress, and advanced calcified atherosclerotic plaque in aortic roots of diabetic Apoe-deficient mice and inflammatory cytokine production in human macrophages.
    CONCLUSIONS: We propose a novel tethering function of DRP1 beyond its established fission function, with DRP1-mediated ER remodeling likely contributing to ER constriction of mitochondria that drives mitochondrial fission. We report DRP1-driven remodeling of select ER microdomains may critically regulate hepatic proteostasis and identify mdivi-1 as a novel small molecule PCSK9 inhibitor.
    TRANSLATIONAL PERSPECTIVE: PCSK9 is a critical protein participating in degradation of low-density lipoprotein receptor, a receptor involved in clearance of circulating low-density lipoprotein. Anti-PCSK9 therapies approved for clinical use are currently limited to antibody therapies. PCSK9 siRNA therapy is also showing promise in clinical trials, but small molecule PCSK9 inhibitors have proven difficult to develop. This study identifies a small molecule inhibitor of a mitochondrial fission protein, DRP1 in human hepatocytes and hepatocyte DRP1-deficiency in mice reduces PCSK9 secretion, providing initial proof-of-concept for novel small molecule PCSK9 inhibition.
  14. Oncogene. 2021 Feb 02.
    Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J.
      The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a key role in cancer progression and is tightly regulated by the proteasome pathway. E3 ligases that mediate NRF2 ubiquitination have been widely reported, but the mechanism of NRF2 deubiquitination remains largely unclear. Here, we identified ubiquitin-specific-processing protease 11 (USP11) in NRF2 complexes and confirmed an interaction between these two proteins. We further found that USP11 deubiquitinates NRF2; this modification stabilizes NRF2. Functionally, USP11 depletion contributes to the suppression of cell proliferation and induction of ferroptotic cell death due to ROS-mediated stress, which can be largely abrogated by overexpression of NRF2. Finally, immunohistochemical staining of USP11 and NRF2 was performed using a lung tissue microarray, which revealed that USP11 is highly expressed in patients with NSCLC and positively correlated with NRF2 expression. Together, USP11 stabilizes NRF2 and is thus an important player in cell proliferation and ferroptosis.
  15. Nature. 2021 Feb 03.
    Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA.
      E3 ligases are typically classified by hallmark domains such as RING and RBR, which are thought to specify unique catalytic mechanisms of ubiquitin transfer to recruited substrates1,2. However, rather than functioning individually, many neddylated cullin-RING E3 ligases (CRLs) and RBR-type E3 ligases in the ARIH family-which together account for nearly half of all ubiquitin ligases in humans-form E3-E3 super-assemblies3-7. Here, by studying CRLs in the SKP1-CUL1-F-box (SCF) family, we show how neddylated SCF ligases and ARIH1 (an RBR-type E3 ligase) co-evolved to ubiquitylate diverse substrates presented on various F-box proteins. We developed activity-based chemical probes that enabled cryo-electron microscopy visualization of steps in E3-E3 ubiquitylation, initiating with ubiquitin linked to the E2 enzyme UBE2L3, then transferred to the catalytic cysteine of ARIH1, and culminating in ubiquitin linkage to a substrate bound to the SCF E3 ligase. The E3-E3 mechanism places the ubiquitin-linked active site of ARIH1 adjacent to substrates bound to F-box proteins (for example, substrates with folded structures or limited length) that are incompatible with previously described conventional RING E3-only mechanisms. The versatile E3-E3 super-assembly may therefore underlie widespread ubiquitylation.
  16. PLoS Comput Biol. 2021 Feb 01. 17(2): e1008654
    Brown AI, Koslover EF.
      Newly-translated glycoproteins in the endoplasmic reticulum (ER) often undergo cycles of chaperone binding and release in order to assist in folding. Quality control is required to distinguish between proteins that have completed native folding, those that have yet to fold, and those that have misfolded. Using quantitative modeling, we explore how the design of the quality-control pathway modulates its efficiency. Our results show that an energy-consuming cyclic quality-control process, similar to the observed physiological system, outperforms alternative designs. The kinetic parameters that optimize the performance of this system drastically change with protein production levels, while remaining relatively insensitive to the protein folding rate. Adjusting only the degradation rate, while fixing other parameters, allows the pathway to adapt across a range of protein production levels, aligning with in vivo measurements that implicate the release of degradation-associated enzymes as a rapid-response system for perturbations in protein homeostasis. The quantitative models developed here elucidate design principles for effective glycoprotein quality control in the ER, improving our mechanistic understanding of a system crucial to maintaining cellular health.
  17. Mol Biol Cell. 2021 Feb 03. mbcE20110688
    He L, Kennedy AS, Houck S, Aleksandrov A, Quinney NL, Cyr-Scully A, Cholon DM, Gentzsch M, Randell SH, Ren HY, Cyr DM.
      The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the ER's cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains. N1303K-CFTR intermediates are clients of JB12-Hsp70 complexes, maintained in a detergent soluble-state, and have a relatively long 3-hour half-life. ERAD-resistant pools of N1303K-CFTR are concentrated in ER-tubules that associate with autophagy initiation sites containing WIPI1, FlP200, and LC3. Destabilization of N1303K-CFTR or depletion of JB12 prevents entry of N1303K-CFTR into the membranes of ER-connected phagophores and traffic to autolysosomes. In contrast, the stabilization of intermediates with the modulator VX-809 promotes the association of N1303K-CFTR with autophagy initiation machinery. N1303K-CFTR is excluded from the ER-exit sites, and its passage from the ER to autolysosomes does not require ER-phagy receptors. DNAJB12 operates in biosynthetically active ER-microdomains to triage membrane protein intermediates in a conformation-specific manner for secretion versus degradation via ERAD or selective-ER-associated autophagy.
  18. Mol Ther. 2021 Feb 02. pii: S1525-0016(21)00067-8. [Epub ahead of print]
    Vidal RL, Sepulveda D, Troncoso-Escudero P, Garcia-Huerta P, Gonzalez C, Plate L, Jerez C, Canovas J, Rivera CA, Castillo V, Cisternas M, Leal S, Martinez A, Grandjean J, Lashuel HA, Martin AJM, Latapiat V, Matus S, Sardi P, Wiseman RL, Hetz C.
      Alteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR-target genes. Here, we designed an ATF6f-XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has stronger an effect in reducing the abnormal aggregation of mutant huntingtin and alpha-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson´s and Huntington´s disease. These results support the concept where directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.
    Keywords:  ATF6; ER stress; Huntington`s Disease; Parkinson`s Disease; UPR; XBP1; protein aggregation
  19. J Biol Chem. 2020 May 22. pii: S0021-9258(17)50269-0. [Epub ahead of print]295(21): 7362-7375
    Croft T, Venkatakrishnan P, James Theoga Raj C, Groth B, Cater T, Salemi MR, Phinney B, Lin SJ.
      NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.
    Keywords:  NAD biosynthesis; NAD homeostasis; NatB; cell metabolism; cell signaling; metabolic regulation; nicotinamide mononucleotide adenylyltransferase (Nmnat); protein acetylation; yeast genetics; yeast metabolism
  20. Mol Cell. 2021 Jan 28. pii: S1097-2765(21)00009-5. [Epub ahead of print]
    Zellner S, Schifferer M, Behrends C.
      Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.
    Keywords:  APEX2; SQSTM1/p62; TOLLIP; aggrephagy; autophagosomes; autophagy; endosomal microautophagy; proteostasis imbalance; proximity labeling; selective autophagy receptors
  21. PLoS Pathog. 2021 Feb 03. 17(2): e1009293
    Cobb DW, Kudyba HM, Villegas A, Hoopmann MR, Baptista RP, Bruton B, Krakowiak M, Moritz RL, Muralidharan V.
      Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.
  22. J Biol Chem. 2020 May 22. pii: S0021-9258(17)50264-1. [Epub ahead of print]295(21): 7301-7316
    Serlidaki D, van Waarde MAWH, Rohland L, Wentink AS, Dekker SL, Kamphuis MJ, Boertien JM, Brunsting JF, Nillegoda NB, Bukau B, Mayer MP, Kampinga HH, Bergink S.
      Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.
    Keywords:  70 kilodalton heat shock protein (Hsp70); HSPA4; HSPH2; Hsp110; amyotrophic lateral sclerosis (ALS) (Lou Gehrig disease); heat shock protein (HSP); protein folding; proteostasis; superoxide dismutase (SOD)
  23. Biochim Biophys Acta Gen Subj. 2021 Feb 02. pii: S0304-4165(21)00017-9. [Epub ahead of print] 129858
    Liu Y, Okamoto K.
      Mitochondria are dynamic organelles functioning in diverse reactions and processes such as energy metabolism, apoptosis, innate immunity, and aging, whose quality and quantity control is critical for cell homeostasis. Mitochondria-specific autophagy, termed mitophagy, is an evolutionarily conserved process that selectively degrades mitochondria via autophagy, thereby contributing to mitochondrial quality and quantity control. In the budding yeast Saccharomyces cerevisiae, the single-pass membrane protein Atg32 accumulates on the surface of mitochondria and recruit the autophagy machinery to initiate mitophagy. This catabolic process is elaborately regulated through transcriptional induction and post-translational modifications of Atg32. Notably, other factors acting in manifold pathways including protein N-terminal acetylation, phospholipid methylation, stress signaling, and endoplasmic reticulum-localized protein dephosphorylation and membrane protein insertion are also linked to mitophagy. Here we review recent discoveries of molecules regulating mitophagy in yeast.
    Keywords:  Atg32; Autophagy; Mitochondria; Mitophagy; Yeast
  24. Stem Cells. 2021 Feb 05.
    Luanpitpong S, Poohadsuan J, Klaihmon P, Kang X, Tangkiettrakul K, Issaragrisil S.
      Metabolic state of hematopoietic stem cells (HSCs) is an important regulator of self-renewal and lineage-specific differentiation. Posttranslational modification of proteins via O-GlcNAcylation is an ideal metabolic sensor, but how it contributes to megakaryopoiesis and thrombopoiesis remains unknown. Here, we reveal for the first time that cellular O-GlcNAcylation levels decline along the course of megakaryocyte (MK) differentiation from human-derived hematopoietic stem and progenitor cells (HSPCs). Inhibition of O-GlcNAc transferase (OGT) that catalyzes O-GlcNAcylation prolongedly decreases O-GlcNAcylation and induces the acquisition of CD34+ CD41a+ MK-like progenitors and its progeny CD34- CD41a+ /CD42b+ megakaryoblasts (MBs)/MKs from HSPCs, consequently resulting in increased CD41a+ and CD42b+ platelets. Using correlation and co-immunoprecipitation analyses, we further identify c-Myc as a direct downstream targets of O-GlcNAcylation in MBs/MKs and provide compelling evidence on the regulation of platelets by novel O-GlcNAc/c-Myc axis. Our data indicate that O-GlcNAcylation posttranslationally regulates c-Myc stability by interfering with its ubiquitin-mediated proteasomal degradation. Depletion of c-Myc upon inhibition of OGT promotes platelet formation in part through the perturbation of cell adhesion molecules, that is, integrin-α4 and integrin-β7, as advised by gene ontology and enrichment analysis for RNA sequencing and validated herein. Together, our findings provide a novel basic knowledge on the regulatory role of O-GlcNAcylation in megakaryopoiesis and thrombopoiesis that could be important in understanding hematologic disorders whose etiology are related to impaired platelet production and may have clinical applications towards an ex vivo platelet production for transfusion. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: This study reveals that cellular O-GlcNAcylation levels decline along the course of megakaryocyte (MK) differentiation from human-derived hematopoietic stem and progenitor cells. Under normal conditions, O-GlcNAcylation stabilizes c-Myc by interfering with its ubiquitin-mediated proteasomal degradation. Inhibition of O-GlcNAc transferase (OGT) disrupts the c-Myc O-GlcNAcylation, resulting in c-Myc degradation and subsequent integrin perturbation and platelet production. Therefore, inhibition of OGT and O-GlcNAcylation, which could be achieved by small molecule inhibition or genetic manipulation, may hold potential for future clinical applications as a means to improve MK differentiation and platelet production.
    Keywords:  O-GlcNAcylation; OGT; c-Myc; integrins; megakaryocyte; megakaryopoiesis; platelet; thrombopoiesis
  25. J Biol Chem. 2020 May 22. pii: S0021-9258(17)50273-2. [Epub ahead of print]295(21): 7418-7430
    Burton TD, Fedele AO, Xie J, Sandeman LY, Proud CG.
      Autophagy and lysosomal activities play a key role in the cell by initiating and carrying out the degradation of misfolded proteins. Transcription factor EB (TFEB) functions as a master controller of lysosomal biogenesis and function during lysosomal stress, controlling most but, importantly, not all lysosomal genes. Here, we sought to better understand the regulation of lysosomal genes whose expression does not appear to be controlled by TFEB. Sixteen of these genes were screened for transactivation in response to diverse cellular insults. mRNA levels for lysosomal-associated membrane protein 3 (LAMP3), a gene that is highly up-regulated in many forms of cancer, including breast and cervical cancers, were significantly increased during the integrated stress response, which occurs in eukaryotic cells in response to accumulation of unfolded and misfolded proteins. Of note, results from siRNA-mediated knockdown of activating transcription factor 4 (ATF4) and overexpression of exogenous ATF4 cDNA indicated that ATF4 up-regulates LAMP3 mRNA levels. Finally, ChIP assays verified an ATF4-binding site in the LAMP3 gene promoter, and a dual-luciferase assay confirmed that this ATF4-binding site is indeed required for transcriptional up-regulation of LAMP3. These results reveal that ATF4 directly regulates LAMP3, representing the first identification of a gene for a lysosomal component whose expression is directly controlled by ATF4. This finding may provide a key link between stresses such as accumulation of unfolded proteins and modulation of autophagy, which removes them.
    Keywords:  activating transcription factor 4 (ATF4); autophagy; cell stress; eukaryotic initiation factor 2 (eIF2); lysosomal-associated membrane protein 3 (LAMP3); lysosome; mammalian target of rapamycin complex 1 (mTORC1); protein misfolding; transcription factor EB (TFEB); unfolded protein response (UPR)
  26. Mol Cell. 2021 Jan 28. pii: S1097-2765(21)00014-9. [Epub ahead of print]
    Hundley FV, Sanvisens Delgado N, Marin HC, Carr KL, Tian R, Toczyski DP.
      The human ubiquitin proteasome system, composed of over 700 ubiquitin ligases (E3s) and deubiquitinases (DUBs), has been difficult to characterize systematically and phenotypically. We performed chemical-genetic CRISPR-Cas9 screens to identify E3s/DUBs whose loss renders cells sensitive or resistant to 41 compounds targeting a broad range of biological processes, including cell cycle progression, genome stability, metabolism, and vesicular transport. Genes and compounds clustered functionally, with inhibitors of related pathways interacting similarly with E3s/DUBs. Some genes, such as FBXW7, showed interactions with many of the compounds. Others, such as RNF25 and FBXO42, showed interactions primarily with a single compound (methyl methanesulfonate for RNF25) or a set of related compounds (the mitotic cluster for FBXO42). Mutation of several E3s with sensitivity to mitotic inhibitors led to increased aberrant mitoses, suggesting a role for these genes in cell cycle regulation. Our comprehensive CRISPR-Cas9 screen uncovered 466 gene-compound interactions covering 25% of the interrogated E3s/DUBs.
    Keywords:  CRISPR-Cas9 screen; DUB; E3 ubiquitin ligase; FBXO42; mitosis; ubiquitin
  27. Emerg Top Life Sci. 2019 Mar 29. 3(1): 39-52
    Ulloa-Aguirre A, Janovick JA.
      Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.
    Keywords:  diabetes insipidus; hypogonadotropin hypogonadism; pharmacoperones; proteostasis; quality control system
  28. Cell Death Dis. 2021 Feb 01. 12(2): 148
    Ho NPY, Leung CON, Wong TL, Lau EYT, Lei MML, Mok EHK, Leung HW, Tong M, Ng IOL, Yun JP, Ma S, Lee TKW.
      Emerging evidence indicates the role of cancer stem cells (CSCs) in tumor relapse and therapeutic resistance in patients with hepatocellular carcinoma (HCC). To identify novel targets against liver CSCs, an integrative analysis of publicly available datasets involving HCC clinical and stemness-related data was employed to select genes that play crucial roles in HCC via regulation of liver CSCs. We revealed an enrichment of an interstrand cross-link repair pathway, in which ubiquitin-conjugating enzyme E2 T (UBE2T) was the most significantly upregulated. Consistently, our data showed that UBE2T was upregulated in enriched liver CSC populations. Clinically, UBE2T overexpression in HCC was further confirmed at mRNA and protein levels and was correlated with advanced tumor stage and poor patient survival. UBE2T was found to be critically involved in the regulation of liver CSCs, as evidenced by increases in self-renewal, drug resistance, tumorigenicity, and metastasis abilities. Mule, an E3 ubiquitin ligase, was identified to be the direct protein binding partner of UBE2T. Rather than the canonical role of acting as a mediator to transfer ubiquitin to E3 ligases, UBE2T is surprisingly able to physically bind and regulate the protein expression of Mule via ubiquitination. Mule was found to directly degrade β-catenin protein, and UBE2T was found to mediate liver CSC functions through direct regulation of Mule-mediated β-catenin degradation; this effect was abolished when the E2 activity of UBE2T was impaired. In conclusion, we revealed a novel UBE2T/Mule/β-catenin signaling cascade that is involved in the regulation of liver CSCs, which provides an attractive potential therapeutic target for HCC.
  29. Genes Cells. 2021 Feb 06.
    Kamemura K, Chen CA, Okumura M, Miura M, Chihara T.
      VAMP-associated protein (VAP) is an endoplasmic reticulum (ER) membrane protein that functions as a tethering protein at the membrane contact sites between the ER and various intracellular organelles. Mutations such as P56S in human VAPB cause neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, VAP functions in neurons are poorly understood. Here, we utilized Drosophila olfactory projection neurons with a mosaic analysis with a repressible cell marker (MARCM) to analyze the neuronal function of VAP33, a Drosophila ortholog of human VAPB. In vap33 null mutant clones, the dendrites of projection neurons exhibited defects in the maintenance of their morphology. The subcellular localization of the Golgi apparatus and mitochondria were also abnormal. These results indicate that Vap33 is required for neuronal morphology and organelle distribution. Additionally, to examine the impact of ALS-associated mutations in neurons, we overexpressed human VAPB-P56S in vap33 null mutant clones (mosaic rescue experiments) and found that, in aged flies, human VAPB-P56S expression caused mislocalization of Bruchpilot, a presynaptic protein. These results implied that synaptic protein localization and ER quality control may be affected by disease mutations. We provide insights into the physiological and pathological functions of VAP in neurons.
  30. Front Mol Biosci. 2020 ;7 598578
    Kaitsuka T, Tomizawa K, Matsushita M.
      Several variant proteins are produced from EEF1D, including two representative proteins produced via alternative splicing machinery. One protein is the canonical translation eukaryotic elongation factor eEF1Bδ1, and the other is the heat shock-responsive transcription factor eEF1BδL. eEF1Bδ1 is phosphorylated by cyclin-dependent kinase 1 (CDK1), but the machinery controlling eEF1BδL phosphorylation and dephosphorylation has not been clarified. In this study, we found that both proteins were dephosphorylated under heat shock and proteotoxic stress, and this dephosphorylation was inhibited by okadaic acid. Using proteins with mutations at putative phosphorylated residues, we revealed that eEF1Bδ1 and eEF1BδL are phosphorylated at S133 and S499, respectively, and these residues are both CDK1 phosphorylation sites. The eEF1BδL S499A mutant more strongly activated HSPA6 promoter-driven reporter than the wild-type protein and S499D mutant. Furthermore, protein phosphatase 1 (PP1) was co-immunoprecipitated with eEF1Bδ1 and eEF1BδL, and PP1 dephosphorylated both proteins in vitro. Thus, this study clarified the role of phosphorylation/dephosphorylation in the functional regulation of eEF1BδL during heat shock.
    Keywords:  heat-shock; phosphatase; protein phosphorylation; stress response; tissue-specific transcription factor; translation elongation factor
  31. J Proteome Res. 2021 Feb 04.
    Hendriks IA, Akimov V, Blagoev B, Nielsen ML.
      Small ubiquitin-like modifiers (SUMO) and ubiquitin are frequent post-translational modifications of proteins that play pivotal roles in all cellular processes. We previously reported mass spectrometry-based proteomics methods that enable profiling of lysines modified by endogenous SUMO or ubiquitin in an unbiased manner, without the need for genetic engineering. Here we investigated the applicability of precursor mass filtering enabled by MaxQuant.Live to our SUMO and ubiquitin proteomics workflows, which efficiently avoided sequencing of precursors too small to be modified but otherwise indistinguishable by mass-to-charge ratio. Using precursor mass filtering, we achieved a much higher selectivity of modified peptides, ultimately resulting in up to 30% more SUMO and ubiquitin sites identified from replicate samples. Real-time exclusion of unmodified peptides by MQL resulted in 90% SUMO-modified precursor selectivity from a 25% pure sample, demonstrating great applicability for digging deeper into ubiquitin-like modificomes. We adapted the precursor mass filtering strategy to the new Exploris 480 mass spectrometer, achieving comparable gains in SUMO precursor selectivity and identification rates. Collectively, precursor mass filtering via MQL significantly increased identification rates of SUMO- and ubiquitin-modified peptides from the exact same samples, without the requirement for prior knowledge or spectral libraries.
    Keywords:  MQL; MaxQuant.Live; SUMO; exclusion; precursor mass filtering; targeting; ubiquitin
  32. Sci Adv. 2021 Jan;pii: eabc8590. [Epub ahead of print]7(3):
    Mueller F, Friese A, Pathe C, da Silva RC, Rodriguez KB, Musacchio A, Bange T.
      SMAC/DIABLO and HTRA2 are mitochondrial proteins whose amino-terminal sequences, known as inhibitor of apoptosis binding motifs (IBMs), bind and activate ubiquitin ligases known as inhibitor of apoptosis proteins (IAPs), unleashing a cell's apoptotic potential. IBMs comprise a four-residue, loose consensus sequence, and binding to IAPs requires an unmodified amino terminus. Closely related, IBM-like N termini are present in approximately 5% of human proteins. We show that suppression of the N-alpha-acetyltransferase NatA turns these cryptic IBM-like sequences into very efficient IAP binders in cell lysates and in vitro and ultimately triggers cellular apoptosis. Thus, amino-terminal acetylation of IBM-like motifs in NatA substrates shields them from IAPs. This previously unrecognized relationship suggests that amino-terminal acetylation is generally protective against protein degradation in human cells. It also identifies IAPs as agents of a general quality control mechanism targeting unacetylated rogues in metazoans.
  33. Cancer Res. 2021 Feb 02. pii: canres.1540.2020. [Epub ahead of print]
    Samanta S, Yang S, Debnath B, Xue D, Kuang Y, Ramkumar K, Lee AS, Ljungman M, Neamati N.
      GRP78 (Glucose-regulated protein, 78 kDa) is a key regulator of ER (endoplasmic reticulum) stress signaling. Cancer cells are highly proliferative and have high demand for protein synthesis and folding, which results in significant stress on the ER. To respond to ER stress and maintain cellular homeostasis, cells activate the unfolded protein response (UPR) that promotes either survival or apoptotic death. Cancer cells utilize the UPR to promote survival and growth. In this study, we describe the discovery of a series of novel hydroxyquinoline GRP78 inhibitors. A representative analog, YUM70, inhibited pancreatic cancer cell growth in vitro and showed in vivo efficacy in a pancreatic cancer xenograft model with no toxicity to normal tissues. YUM70 directly bound GRP78 and inactivated its function, resulting in ER stress-mediated apoptosis. A YUM70 analog conjugated with BODIPY show co-localization of the compound with GRP78 in the ER. Moreover, a YUM70-PROTAC (PROteolysis TArgeting Chimera) was synthesized to force degradation of GRP78 in pancreatic cancer cells. YUM70 showed a strong synergistic cytotoxicity with topotecan and vorinostat. Together, our study demonstrates that YUM70 is a novel inducer of ER stress with preclinical efficacy as a monotherapy or in combination with topoisomerase and HDAC inhibitors in pancreatic cancer.
  34. Sci Adv. 2021 Feb;pii: eabd6263. [Epub ahead of print]7(6):
    Koduri V, Duplaquet L, Lampson BL, Wang AC, Sabet AH, Ishoey M, Paulk J, Teng M, Harris IS, Endress JE, Liu X, Dasilva E, Paulo JA, Briggs KJ, Doench JG, Ott CJ, Zhang T, Donovan KA, Fischer ES, Gygi SP, Gray NS, Bradner J, Medin JA, Buhrlage SJ, Oser MG, Kaelin WG.
      Most intracellular proteins lack hydrophobic pockets suitable for altering their function with drug-like small molecules. Recent studies indicate that some undruggable proteins can be targeted by compounds that can degrade them. For example, thalidomide-like drugs (IMiDs) degrade the critical multiple myeloma transcription factors IKZF1 and IKZF3 by recruiting them to the cereblon E3 ubiquitin ligase. Current loss of signal ("down") assays for identifying degraders often exhibit poor signal-to-noise ratios, narrow dynamic ranges, and false positives from compounds that nonspecifically suppress transcription or translation. Here, we describe a gain of signal ("up") assay for degraders. In arrayed chemical screens, we identified novel IMiD-like IKZF1 degraders and Spautin-1, which, unlike the IMiDs, degrades IKZF1 in a cereblon-independent manner. In a pooled CRISPR-Cas9-based screen, we found that CDK2 regulates the abundance of the ASCL1 oncogenic transcription factor. This methodology should facilitate the identification of drugs that directly or indirectly degrade undruggable proteins.
  35. Proc Natl Acad Sci U S A. 2021 Feb 09. pii: e2015654118. [Epub ahead of print]118(6):
    Jo U, Murai Y, Chakka S, Chen L, Cheng K, Murai J, Saha LK, Miller Jenkins LM, Pommier Y.
      Schlafen-11 (SLFN11) inactivation in ∼50% of cancer cells confers broad chemoresistance. To identify therapeutic targets and underlying molecular mechanisms for overcoming chemoresistance, we performed an unbiased genome-wide RNAi screen in SLFN11-WT and -knockout (KO) cells. We found that inactivation of Ataxia Telangiectasia- and Rad3-related (ATR), CHK1, BRCA2, and RPA1 overcome chemoresistance to camptothecin (CPT) in SLFN11-KO cells. Accordingly, we validate that clinical inhibitors of ATR (M4344 and M6620) and CHK1 (SRA737) resensitize SLFN11-KO cells to topotecan, indotecan, etoposide, cisplatin, and talazoparib. We uncover that ATR inhibition significantly increases mitotic defects along with increased CDT1 phosphorylation, which destabilizes kinetochore-microtubule attachments in SLFN11-KO cells. We also reveal a chemoresistance mechanism by which CDT1 degradation is retarded, eventually inducing replication reactivation under DNA damage in SLFN11-KO cells. In contrast, in SLFN11-expressing cells, SLFN11 promotes the degradation of CDT1 in response to CPT by binding to DDB1 of CUL4CDT2 E3 ubiquitin ligase associated with replication forks. We show that the C terminus and ATPase domain of SLFN11 are required for DDB1 binding and CDT1 degradation. Furthermore, we identify a therapy-relevant ATPase mutant (E669K) of the SLFN11 gene in human TCGA and show that the mutant contributes to chemoresistance and retarded CDT1 degradation. Taken together, our study reveals new chemotherapeutic insights on how targeting the ATR pathway overcomes chemoresistance of SLFN11-deficient cancers. It also demonstrates that SLFN11 irreversibly arrests replication by degrading CDT1 through the DDB1-CUL4CDT2 ubiquitin ligase.
    Keywords:  ATR/CHK1 inhibitor; CDT1; CUL4; SLFN11
  36. Trends Cell Biol. 2021 Jan 30. pii: S0962-8924(21)00006-4. [Epub ahead of print]
    Wu X, Rapoport TA.
      Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
    Keywords:  endoplasmic reticulum; lipid bilayer; membrane distortion; protein translocation; structure
  37. Elife. 2021 Feb 01. pii: e62886. [Epub ahead of print]10
    Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S.
      Cells store energy in the form of neutral lipids packaged into micrometer-sized organelles named lipid droplets (LD). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of neutral lipids to be stored in LD, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, that is enriched at sites of LD formation, promotes the packaging of neutral lipids into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LD and promote accumulation of neutral lipids in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.
    Keywords:  S. cerevisiae; cell biology; molecular biophysics; structural biology
  38. Cell Rep. 2021 Feb 02. pii: S2211-1247(21)00018-8. [Epub ahead of print]34(5): 108705
    van Mierlo G, Jansen JRG, Wang J, Poser I, van Heeringen SJ, Vermeulen M.
      Membraneless organelles are liquid condensates, which form through liquid-liquid phase separation. Recent advances show that phase separation is essential for cellular homeostasis by regulating basic cellular processes, including transcription and signal transduction. The reported number of proteins with the capacity to mediate protein phase separation (PPS) is continuously growing. While computational tools for predicting PPS have been developed, obtaining a proteome-wide overview of PPS probabilities has remained challenging. Here, we present a phase separation analysis and prediction (PSAP) machine-learning classifier that, based solely on the amino acid content of a training set of known PPS proteins, can determine the phase separation likelihood for each protein in a given proteome. Through comparison with PPS databases, existing predictors, and experimental evidence, we demonstrate the validity and advantages of the PSAP classifier. We anticipate that the PSAP predictor provides a useful tool for future research aimed at identifying phase separating proteins in health and disease.
    Keywords:  phase separation, machine learning, condensate formation
  39. JCI Insight. 2021 Feb 04. pii: 143359. [Epub ahead of print]
    Kasetti RB, Maddineni P, Kiehlbauch CC, Patil S, Searby CC, Levine B, Sheffield VC, Zode GS.
      Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with Primary Open Angle Glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic cause of POAG. We have previously shown that mutant myocilin accumulates in the endoplasmic reticulum (ER) and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activates autophagy but it is functionally impairecd in cultured human trabecular meshwork (TM) cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsens mutant myocilin accumulation and exacerbates IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy is associated with chronic ER stress-induced transcriptional factor, CHOP. Deletion of CHOP corrects impaired autophagy, enhances recognition and degradation of mutant myocilin by autophagy,and reduces glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via Tat-beclin 1 peptide or torin 2, promotes autophagic degradation of mutant myocilin and reduces elevated IOP in Tg-MYOCY437H mice. Together, our studies provide a novel treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.
    Keywords:  Autophagy; Cell Biology; Cell stress; Ophthalmology; Protein misfolding
  40. Nat Commun. 2021 Feb 05. 12(1): 828
    Biebl MM, Lopez A, Rehn A, Freiburger L, Lawatscheck J, Blank B, Sattler M, Buchner J.
      The co-chaperone p23 is a central part of the Hsp90 machinery. It stabilizes the closed conformation of Hsp90, inhibits its ATPase and is important for client maturation. Yet, how this is achieved has remained enigmatic. Here, we show that a tryptophan residue in the proximal region of the tail decelerates the ATPase by allosterically switching the conformation of the catalytic loop in Hsp90. We further show by NMR spectroscopy that the tail interacts with the Hsp90 client binding site via a conserved helix. This helical motif in the p23 tail also binds to the client protein glucocorticoid receptor (GR) in the free and Hsp90-bound form. In vivo experiments confirm the physiological importance of ATPase modulation and the role of the evolutionary conserved helical motif for GR activation in the cellular context.
  41. J Biol Chem. 2020 Jan 03. pii: S0021-9258(17)49557-3. [Epub ahead of print]295(1): 158-169
    Mymrikov EV, Riedl M, Peters C, Weinkauf S, Haslbeck M, Buchner J.
      Small heat-shock proteins (sHsps) compose the most widespread family of molecular chaperones. The human genome encodes 10 different sHsps (HspB1-10). It has been shown that HspB1 (Hsp27), HspB5 (αB-crystallin), and HspB6 (Hsp20) can form hetero-oligomers in vivo. However, the impact of hetero-oligomerization on their structure and chaperone mechanism remains enigmatic. Here, we analyzed hetero-oligomer formation in human cells and in vitro using purified proteins. Our results show that the effect of hetero-oligomer formation on the composition of the sHsp ensembles and their chaperone activities depends strongly on the respective sHsps involved. We observed that hetero-oligomer formation between HspB1 and HspB5 leads to an ensemble that is dominated by species larger than the individual homo-oligomers. In contrast, the interaction of dimeric HspB6 with either HspB1 or HspB5 oligomers shifted the ensemble toward smaller oligomers. We noted that the larger HspB1-HspB5 hetero-oligomers are less active and that HspB6 activates HspB5 by dissociation to smaller oligomer complexes. The chaperone activity of HspB1-HspB6 hetero-oligomers, however, was modulated in a substrate-specific manner, presumably due to the specific enrichment of an HspB1-HspB6 heterodimer. These heterodimeric species may allow the tuning of the chaperone properties toward specific substrates. We conclude that sHsp hetero-oligomerization exerts distinct regulatory effects depending on the sHsps involved.
    Keywords:  HspB; chaperone; hetero-oligomers; molecular chaperone; oligomerization; protein aggregation; protein folding; protein–protein interaction; small heat-shock protein (sHsp)
  42. STAR Protoc. 2021 Mar 19. 2(1): 100288
    Yang K, Zhou Y, Roberts BL, Nie X, Tang W.
      The discovery of potent cell-permeable E3 ubiquitin ligase ligands can significantly facilitate the development of proteolysis targeting chimeras (PROTACs). Here, we present a protocol to determine the binding affinity of ligands toward CRBN E3 ubiquitin ligase, using a cellular target engagement mechanism and in-cell ELISA assay. This protocol is easy to establish, with relatively low cost and rapid time frame. It can also be modified to measure the level of other proteins or determine the ligand affinity toward other E3s. For complete details on the use and execution of this protocol, please refer to Yang et al. (2020).
    Keywords:  Cell-based assays; Molecular/chemical probes; Protein biochemistry
  43. Virology. 2020 Dec 24. pii: S0042-6822(20)30245-2. [Epub ahead of print]556 9-22
    Mihelc EM, Baker SC, Lanman JK.
      Coronaviruses rearrange endoplasmic reticulum (ER) membranes to form a reticulovesicular network (RVN) comprised predominantly of double membrane vesicles (DMVs) involved in viral replication. While portions of the RVN have been analyzed by electron tomography (ET), the full extent of the RVN is not known, nor how RVN formation affects ER morphology. Additionally the precise mechanism of DMV formation has not been observed. In this work, we examined large volumes of coronavirus-infected cells at multiple timepoints during infection using serial-section ET. We provide a comprehensive 3D analysis of the ER and RVN which gives insight into the formation mechanism of DMVs as well as the first evidence for their lysosomal degradation. We also show that the RVN breaks down late in infection, concurrent with the ER becoming the main budding compartment for new virions. This work provides a broad view of the multifaceted involvement of ER membranes in coronavirus infection.
    Keywords:  Coronavirus; Double membrane vesicle; ERAD tuning; Electron microscopy; Electron tomography; Endoplasmic reticulum; Membrane rearrangement; Mouse hepatitis virus; Replication organelle
  44. Viruses. 2021 01 26. pii: 182. [Epub ahead of print]13(2):
    Chiang C, Liu G, Gack MU.
      Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
    Keywords:  ISG15; innate immunity; interferon; ubiquitin; viral evasion
  45. Int J Biol Macromol. 2021 Jan 28. pii: S0141-8130(21)00214-2. [Epub ahead of print]174 175-184
    Yan P, Zou Z, Zhang S, Wang R, Niu T, Zhang X, Liu D, Zhou X, Chang AK, Milton NGN, Jones GW, He J.
      Protein disulfide isomerase (PDI) is an important molecular chaperone capable of facilitating protein folding in addition to catalyzing the formation of a disulfide bond. To better understand the distinct substrate-screening principles of Pichia pastoris PDI (Protein disulfide isomerase) and the protective role of PDI in amyloidogenic diseases, we investigated the expression abundance and intracellular retention levels of three archetypal amyloidogenic disulfide bond-free proteins (Aβ42, α-synuclein (α-Syn) and SAA1) in P. pastoris GS115 strain without and with the overexpression of PpPDI (P. pastoris PDI). Intriguingly, amyloidogenic Aβ42 and α-Syn were detected only as intracellular proteins whereas amyloidogenic SAA1 was detected both as intracellular and extracellular proteins when these proteins were expressed in the PpPDI-overexpressing GS115 strain. The binding between PpPDI and each of the three amyloidogenic proteins was investigated by molecular docking and simulations. Three different patterns of PpPDI-substrate complexes were observed, suggesting that multiple modes of binding might exist for the binding between PpPDI and its amyloidogenic protein substrates, and this could represent different specificities and affinities of PpPDI toward its substrates. Further analysis of the proteomics data and functional annotations indicated that PpPDI could eliminate the need for misfolded proteins to be partitioned in ER-associated compartments.
    Keywords:  Amyloidogenic protein; Molecular chaperone; Protein disulfide isomerase
  46. J Cell Sci. 2021 Feb 01. pii: jcs257717. [Epub ahead of print]134(3):
    Fesquet D, Llères D, Grimaud C, Viganò C, Méchali F, Boulon S, Coux O, Bonne-Andrea C, Baldin V.
      PA28γ (also known as PSME3), a nuclear activator of the 20S proteasome, is involved in the degradation of several proteins regulating cell growth and proliferation and in the dynamics of various nuclear bodies, but its precise cellular functions remain unclear. Here, using a quantitative FLIM-FRET based microscopy assay monitoring close proximity between nucleosomes in living human cells, we show that PA28γ controls chromatin compaction. We find that its depletion induces a decompaction of pericentromeric heterochromatin, which is similar to what is observed upon the knockdown of HP1β (also known as CBX1), a key factor of the heterochromatin structure. We show that PA28γ is present at HP1β-containing repetitive DNA sequences abundant in heterochromatin and, importantly, that HP1β on its own is unable to drive chromatin compaction without the presence of PA28γ. At the molecular level, we show that this novel function of PA28γ is independent of its stable interaction with the 20S proteasome, and most likely depends on its ability to maintain appropriate levels of H3K9me3 and H4K20me3, histone modifications that are involved in heterochromatin formation. Overall, our results implicate PA28γ as a key factor involved in the regulation of the higher order structure of chromatin.
    Keywords:  FLIM-FRET; HP1; Heterochromatin; PA28γ; Proteasome
  47. Nat Commun. 2021 02 01. 12(1): 720
    Ziegler DV, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, Wiel C, Bendridi N, Djebali S, Farfariello V, Prevarskaya N, Payen L, Marvel J, Aubert S, Flaman JM, Rieusset J, Martin N, Bernard D.
      Cellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.
  48. J Mol Biol. 2021 Feb 01. pii: S0022-2836(21)00038-3. [Epub ahead of print] 166844
    Das A, Middleton AJ, Padala P, Ledgerwood EC, Mace PD, Day CL.
      Tumour necrosis factor (TNF) receptor associated factor (TRAF) family members share a common domain architecture, but play non-redundant physiological roles in cell signalling. At the N-terminus, most TRAFs have a RING domain, followed by a series of Zinc finger (ZF) domains. The RING domain of TRAF6 dimerizes, and the RING homodimer together with the first ZF assembles ubiquitin chains that form a platform which facilitates activation of downstream kinases. The RING dimer interface is conserved amongst TRAF proteins, suggesting that functional heterodimers could be possible. Here we report the structure of the TRAF5-TRAF6 RING heterodimer, which accounts for the stability of the heterodimer as well as its ability to assemble ubiquitin chains. We also show that the RING domain of TRAF6 heterodimerizes with TRAF3 and TRAF2, and demonstrate that the linker helix and first ZF of TRAF2 can cooperate with TRAF6 to promote chain assembly. Collectively our results suggest that TRAF RING homo- and hetero-dimers have the potential to bridge interaction of nearby TRAF trimers and modulate TRAF-mediated signalling.
    Keywords:  Cell signalling networks; E3 ligases; Post-translational modification; Protein-protein interactions; TRAF6
  49. Adv Exp Med Biol. 2021 ;1278 47-62
    Montauti E, Fang D.
      Regulatory T (Tregs) cells, required to maintain immune homeostasis, have significant power in disease outcomes. Treg dysfunction, predominantly characterized by the loss of the master transcription factor FoxP3 and the acquisition of Teff-like phenotypes, can promote autoimmunity as well as enhance anti-tumor immunity. As FoxP3 expression and stability are pinnacle for Treg suppressive functions, understanding the pathways that regulate FoxP3 is crucial to ascertain Treg-mediated therapies for autoimmune diseases and cancer. Mechanisms controlling FoxP3 expression and stability range from transcriptional to posttranslational, revealing multiple therapeutic opportunities. While many of the transcriptional pathways have been explored in detail, a recent surge in interest on the posttranslational mechanisms regulating FoxP3 has arisen. Particularly, the role of ubiquitination on Tregs both directly and indirectly involving FoxP3 has gained interest. Here, we summarize the current knowledge on ubiquitin-dependent, FoxP3-mediated control of Treg function as it pertains to human diseases.
    Keywords:  Deubiquitination; E3 ligase; FoxP3; Treg; Ubiquitin
  50. Sci Adv. 2021 Jan;pii: eabc5539. [Epub ahead of print]7(4):
    Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang Y, Zeng Z, Yan L, Zhao Y, Shi J.
      Annexin-A1 (ANXA1) has recently been proposed to play a role in microglial activation after brain ischemia, but the underlying mechanism remains poorly understood. Here, we demonstrated that ANXA1 is modified by SUMOylation, and SUMOylated ANXA1 could promote the beneficial phenotype polarization of microglia. Mechanistically, SUMOylated ANXA1 suppressed nuclear factor κB activation and the production of proinflammatory mediators. Further study revealed that SUMOylated ANXA1 targeted the IκB kinase (IKK) complex and selectively enhanced IKKα degradation. Simultaneously, we detected that SUMOylated ANXA1 facilitated the interaction between IKKα and NBR1 to promote IKKα degradation through selective autophagy. Further work revealed that the overexpression of SUMOylated ANXA1 in microglia/macrophages resulted in marked improvement in neurological function in a mouse model of cerebral ischemia. Collectively, our study demonstrates a previously unidentified mechanism whereby SUMOylated ANXA1 regulates microglial polarization and strongly indicates that up-regulation of ANXA1 SUMOylation in microglia may provide therapeutic benefits for cerebral ischemia.
  51. J Cell Sci. 2021 Feb 03. pii: jcs.256255. [Epub ahead of print]
    Wrighton PJ, Shwartz A, Heo JM, Quenzer ED, LaBella KA, Harper JW, Goessling W.
      Mitophagy, the selective recycling of mitochondria through autophagy, is a crucial metabolic process induced by cellular stress, and defects are linked to aging, sarcopenia, and neurodegenerative diseases. To therapeutically target mitophagy, the fundamental in vivo dynamics and molecular mechanisms must be fully understood. Here, we generated mitophagy biosensor zebrafish lines expressing mitochondrially targeted, pH-sensitive, fluorescent probes mito-Keima and mito-EGFP-mCherry and used quantitative intravital imaging to illuminate mitophagy during physiological stresses-embryonic development, fasting and hypoxia. In fasted muscle, volumetric mitolysosome size analyses documented organelle stress-response dynamics, and time-lapse imaging revealed mitochondrial filaments undergo piecemeal fragmentation and recycling rather than the wholesale turnover observed in cultured cells. Hypoxia-inducible factor (Hif) pathway activation through physiological hypoxia or chemical or genetic modulation also provoked mitophagy. Intriguingly, mutation of a single mitophagy receptor bnip3 prevented this effect, whereas disruption of other putative hypoxia-associated mitophagy genes bnip3la (nix), fundc1, pink1 or prkn (Parkin) had no effect. This in vivo imaging study establishes fundamental dynamics of fasting-induced mitophagy and identifies bnip3 as the master regulator of Hif-induced mitophagy in vertebrate muscle.
    Keywords:  Autophagy; Fasting; Hypoxia; Lysosome; Mitochondria
  52. PLoS One. 2021 ;16(2): e0246531
    Kobayashi Y, Oguro A, Hirata Y, Imaoka S.
      Hypoxia-inducible factor-1alpha (HIF-1alpha), a transcription factor, plays a critical role in adaption to hypoxia, which is a major feature of diseases, including cancer. Protein disulfide isomerase (PDI) is up-regulated in numerous cancers and leads to cancer progression. PDI, a member of the TRX superfamily, regulates the transcriptional activities of several transcription factors. To investigate the mechanisms by which PDI affects the function of HIF-1alpha, the overexpression or knockdown of PDI was performed. The overexpression of PDI decreased HIF-1alpha expression in the human hepatocarcinoma cell line, Hep3B, whereas the knockdown of endogenous PDI increased its expression. NH4Cl inhibited the decrease in HIF-1alpha expression by PDI overexpression, suggesting that HIF-1alpha was degraded by the lysosomal pathway. HIF-1alpha is transferred to lysosomal membranes by heat shock cognate 70 kDa protein (HSC70). The knockdown of HSC70 abolished the decrease, and PDI facilitated the interaction between HIF-1alpha and HSC70. HIF-1alpha directly interacted with PDI. PDI exists not only in the endoplasmic reticulum (ER), but also in the cytosol. Hypoxia increased cytosolic PDI. We also investigated changes in the redox state of HIF-1alpha using PEG-maleimide, which binds to thiols synthesized from disulfide bonds by reduction. An up-shift in the HIF-1alpha band by the overexpression of PDI was detected, suggesting that PDI formed disulfide bond in HIF-1alpha. HIF-1alpha oxidized by PDI was not degraded in HSC70-knockdown cells, indicating that the formation of disulfide bond in HIF-1alpha was important for decreases in HIF-1alpha expression. To the best of our knowledge, this is the first study to show the regulation of the expression and redox state of HIF-1alpha by PDI. We also demonstrated that PDI formed disulfide bonds in HIF-1alpha 1-245 aa and decreased its expression. In conclusion, the present results showed that PDI is a novel factor regulating HIF-1alpha through lysosome-dependent degradation by changes in its redox state.
  53. J Cell Sci. 2021 Feb 03. pii: jcs.253682. [Epub ahead of print]
    Kira S, Noguchi M, Araki Y, Oikawa Y, Yoshimori T, Miyahara A, Noda T.
      Under starvation conditions, cells degrade their own components via autophagy in order to provide sufficient nutrients to ensure their survival. However, even if starvation persists, the cell is not completely degraded by autophagy, implying the existence of some kind of termination mechanism. In the yeast Saccharomyces cerevisiae, autophagy is terminated after 10-12 hr of nitrogen starvation. In this study, we found that termination is mediated by re-phosphorylation of Atg13 by the Atg1 protein kinase, which is also affected by PP2C phosphatases, and the eventual dispersion of the PAS (pre-autophagosomal structure/phagophore assembly site). In a genetic screen, we identified an uncharacterized vacuolar membrane protein, Tag1, as a factor responsible for termination of autophagy. Re-phosphorylation of Atg13 and eventual PAS dispersal were defective in the Δtag1 mutant. The vacuolar luminal domain of Tag1 and autophagic progression are important for the behaviors of Tag1. Together, our findings reveal the mechanism and factors responsible for termination of autophagy in yeast.
    Keywords:  Atg1; Autophagy; Yeast
  54. Nucleic Acids Res. 2021 Feb 01. pii: gkab032. [Epub ahead of print]
    Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo JJ.
      Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
  55. Sci Rep. 2021 Feb 04. 11(1): 3007
    Avagliano Trezza R, Punt AM, Mientjes E, van den Berg M, Zampeta FI, de Graaf IJ, van der Weegen Y, Demmers JAA, Elgersma Y, Distel B.
      Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.
  56. Acta Neuropathol Commun. 2021 Feb 04. 9(1): 21
    Rozas P, Pinto C, Martínez Traub F, Díaz R, Pérez V, Becerra D, Ojeda P, Ojeda J, Wright MT, Mella J, Plate L, Henríquez JP, Hetz C, Medinas DB.
      Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.
    Keywords:  Amyotrophic lateral sclerosis; ERp57; Mutant SOD1; Neuromuscular junction; Protein aggregation
  57. Cancer Res. 2021 Feb 05. pii: canres.2756.2020. [Epub ahead of print]
    Grunberg N, Pevsner-Fischer M, Goshen-Lago T, Diment J, Stein Y, Lavon H, Mayer S, Levi-Galibov O, Friedman G, Ofir-Birin Y, Syu LJ, Migliore C, Shimoni E, Stemmer SM, Brenner B, Dlugosz AA, Lyden D, Regev-Rudzki N, Ben-Aharon I, Scherz-Shouval R.
      Gastric cancer is the 3rd most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from gastric cancer patients. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A (INHBA) and thrombospondin 2 (THBS2), which were secreted in CAF-derived extracellular vesicles (EV) to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment.
  58. Biochem Soc Trans. 2021 Feb 05. pii: BST20201060. [Epub ahead of print]
    Cao Y, Zhou H, Chen X, Li Y, Hu J, Zhou G, Wang L.
      The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma.
    Keywords:  PROTAC; cullin-RING ligases; glioma; neddylation; ring finger E3s; ubiquitin proteasome system