bims-proteo Biomed News
on Proteostasis
Issue of 2021‒01‒17
forty-four papers selected by
Eric Chevet

  1. Mol Cell Proteomics. 2019 Jun;pii: S1535-9476(20)31820-X. [Epub ahead of print]18(6): 1197-1209
    Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G.
      Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
    Keywords:  Cell biology*; HIF; HIF-1α; Hypoxia; Mass Spectrometry; Molecular biology*; Post-translational modifications*; SILAC; SUMO; TFAP2A; Transcriptional Regulation*
  2. Cell Death Differ. 2021 Jan 13.
    Jahan AS, Elbæk CR, Damgaard RB.
      Post-translational modification of proteins with ubiquitin (ubiquitination) provides a rapid and versatile mechanism for regulating cellular signalling systems. Met1-linked (or 'linear') ubiquitin chains have emerged as a key regulatory signal that controls cell death, immune signalling, and other vital cellular functions. The molecular machinery that assembles, senses, and disassembles Met1-linked ubiquitin chains is highly specific. In recent years, the thorough biochemical and genetic characterisation of the enzymes and proteins of the Met1-linked ubiquitin signalling machinery has paved the way for substantial advances in our understanding of how Met1-linked ubiquitin chains control cell signalling and biology. Here, we review current knowledge and recent insights into the role of Met1-linked ubiquitin chains in cell signalling with an emphasis on their role in disease biology. Met1-linked ubiquitin has potent regulatory functions in immune signalling, NF-κB transcription factor activation, and cell death. Importantly, mounting evidence shows that dysregulation of Met1-linked ubiquitin signalling is associated with multiple human diseases, including immune disorders, cancer, and neurodegeneration. We discuss the latest evidence on the cellular function of Met1-linked ubiquitin in the context of its associated diseases and highlight new emerging roles of Met1-linked ubiquitin chains in cell signalling, including regulation of protein quality control and metabolism.
  3. Sci China Life Sci. 2021 Jan 08.
    Liu M, Jin J, Ji Y, Shan H, Zou Z, Cao Y, Yang L, Liu L, Zhou L, Lei H, Wu Y, Xu H, Wu Y.
      The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.
    Keywords:  AML; CHIP; Hsp90; Ikaros; STA-9090
  4. Dev Cell. 2021 Jan 11. pii: S1534-5807(20)31020-0. [Epub ahead of print]56(1): 52-66.e7
    Wu H, Voeltz GK.
      ER tubules form and maintain membrane contact sites (MCSs) with endosomes. How and why these ER-endosome MCSs persist as endosomes traffic and mature is poorly understood. Here we find that a member of the reticulon protein family, Reticulon-3L (Rtn3L), enriches at ER-endosome MCSs as endosomes mature. We show that this localization is due to the long divergent N-terminal cytoplasmic domain of Rtn3L. We found that Rtn3L is recruited to ER-endosome MCSs by endosomal protein Rab9a, which marks a transition stage between early and late endosomes. Rab9a utilizes an FSV region to recruit Rtn3L via its six LC3-interacting region motifs. Consistent with our localization results, depletion or deletion of RTN3 from cells results in endosome maturation and cargo sorting defects, similar to RAB9A depletion. Together our data identify a tubular ER protein that promotes endosome maturation at ER MCSs.
    Keywords:  endoplasmic reticulum; endosome maturation; membrane contact sites
  5. Proc Natl Acad Sci U S A. 2021 Jan 05. pii: e2005539118. [Epub ahead of print]118(1):
    Feng Y, Ariosa AR, Yang Y, Hu Z, Dengjel J, Klionsky DJ.
      Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.
    Keywords:  autophagy; degradation; lysosome; ubiquitination; vacuole
  6. J Biol Chem. 2021 Jan 08. pii: S0021-9258(21)00011-9. [Epub ahead of print] 100246
    Harris LD, Le Pen J, Scholz N, Mieszczanek J, Vaughan N, Davis S, Berridge G, Kessler B, Bienz M, Licchesi JDF.
      Ubiquitin is a versatile post-translational modification which is covalently attached to protein targets either as a single moiety or as a ubiquitin chain. In contrast to K48 and K63-linked chains which have been extensively studied, the regulation and function of most atypical ubiquitin chains is only starting to emerge. The deubiquitinase TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. Yet, substrates of TRABID and the cellular functions of these atypical ubiquitin signals remain unclear. We determined the interactome of two TRABID constructs rendered catalytic dead either through a point mutation in the catalytic cysteine residue or through removal of the OTU catalytic domain. We identified 50 proteins trapped by both constructs and which therefore represent candidate substrates of TRABID. We then validated the E3 ubiquitin ligase HECTD1 as a substrate of TRABID and used UbiCREST and Ub-AQUA proteomics to show that HECTD1 preferentially assembles K29- and K48-linked ubiquitin chains. Further in vitro autoubiquitination assays using ubiquitin mutants established that while HECTD1 can assemble short homotypic K29 and K48-linked chains, it requires branching at K29/K48 in order to achieve its full ubiquitin ligase activity. We next used transient knockdown and genetic knock out of TRABID in mammalian cells in order to determine the functional relationship between TRABID and HECTD1. This revealed that upon TRABID depletion, HECTD1 is readily degraded. Thus, this study identifies HECTD1 as a mammalian E3 ligase which assembles branched K29/K48 chains and also establishes TRABID-HECTD1 as a DUB/E3 pair regulating K29 linkages.
    Keywords:  Deubiquitination; E3 ubiquitin ligase; HECTD1; K29/K48-linked polyubiquitin chain; Polyubiquitin chain; Protein degradation; TRABID; Ubiquitin; ubiquitin thioesterase
  7. Proc Natl Acad Sci U S A. 2021 Jan 19. pii: e2012209118. [Epub ahead of print]118(3):
    Almasy KM, Davies JP, Lisy SM, Tirgar R, Tran SC, Plate L.
      Flaviviruses, including dengue and Zika, are widespread human pathogens; however, no broadly active therapeutics exist to fight infection. Recently, remodeling of endoplasmic reticulum (ER) proteostasis by pharmacologic regulators, such as compound 147, was shown to correct pathologic ER imbalances associated with protein misfolding diseases. Here, we establish an additional activity of compound 147 as an effective host-centered antiviral agent against flaviviruses. Compound 147 reduces infection by attenuating the infectivity of secreted virions without causing toxicity in host cells. Compound 147 is a preferential activator of the ATF6 pathway of the ER unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs and additional non-PDI targets using RNAi and other small-molecule inhibitors was unable to recapitulate the antiviral effects, suggesting a unique polypharmacology may mediate the activity. Importantly, 147 can impair infection of multiple strains of dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.
    Keywords:  ER proteostasis; activating transcription factor 6 (ATF6); antiviral; flavivirus
  8. Front Plant Sci. 2020 ;11 610052
    Feldeverd E, Porter BW, Yuen CYL, Iwai K, Carrillo R, Smith T, Barela C, Wong K, Wang P, Kang BH, Matsumoto K, Christopher DA.
      Plants adapt to heat via thermotolerance pathways in which the activation of protein folding chaperones is essential. In eukaryotes, protein disulfide isomerases (PDIs) facilitate the folding of nascent and misfolded proteins in the secretory pathway by catalyzing the formation and isomerization of disulfide bonds and serving as molecular chaperones. In Arabidopsis, several members of the PDI family are upregulated in response to chemical inducers of the unfolded protein response (UPR), including both members of the non-classical PDI-M subfamily, PDI9 and PDI10. Unlike classical PDIs, which have two catalytic thioredoxin (TRX) domains separated by two non-catalytic TRX-fold domains, PDI-M isoforms are orthologs of mammalian P5/PDIA6 and possess two tandem catalytic domains. Here, PDI9 accumulation was found to be upregulated in pollen in response to heat stress. Histochemical staining of plants harboring the PDI9 and PDI10 promoters fused to the gusA gene indicated they were actively expressed in the anthers of flowers, specifically in the pollen and tapetum. Immunoelectron microscopy revealed that PDI9 localized to the endoplasmic reticulum in root and pollen cells. transfer DNA (T-DNA) insertional mutations in the PDI9 gene disrupted pollen viability and development in plants exposed to heat stress. In particular, the pollen grains of pdi9 mutants exhibited disruptions in the reticulated pattern of the exine and an increased adhesion of pollen grains. Pollen in the pdi10 single mutant did not display similar heat-associated defects, but pdi9 pdi10 double mutants (DMs) completely lost exine reticulation. Interestingly, overexpression of PDI9 partially led to heat-associated defects in the exine. We conclude that PDI9 plays an important role in pollen thermotolerance and exine biogenesis. Its role fits the mechanistic theory of proteostasis in which an ideal balance of PDI isoforms is required in the endoplasmic reticulum (ER) for normal exine formation in plants subjected to heat stress.
    Keywords:  heat stress; pollen exine biogenesis; pollen viability; protein disulfide isomerase; protein folding
  9. Cell Death Differ. 2021 Jan 11.
    Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D.
      The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
  10. Mol Cell Proteomics. 2020 Dec;pii: S1535-9476(20)60006-8. [Epub ahead of print]19(12): 1968-1986
    Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA.
      Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
    Keywords:  IkBa; IκB; Mallory-Denk-bodies; NF-kB; NF-κB; NMPP; PPIX; X-linked protoporphyria; ZnPP; ZnPPIX; affinity proteomics; erythropoietic protoporphyria; hepatotoxicity; immunoaffinity; inflammation; inflammatory response; knockouts*; label-free quantification; liver disease; liver inflammation; mass spectrometry; p62; protein aggregation; protein-protein interactions; proteomics; α; β
  11. J Biol Chem. 2021 Jan 08. pii: S0021-9258(21)00016-8. [Epub ahead of print] 100249
    Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM.
      The serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec (aSec) system. While all aSec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin GspB. Since these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues, and that O-acetylation prevented Glc deposition. Whereas streptococci expressing non-acetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to wild-type levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, since O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.
    Keywords:  O-acetylation; Streptococcus gordonii; accessory; glycoprotein: glucosylation
  12. Glycobiology. 2021 Jan 12. pii: cwab002. [Epub ahead of print]
    Chaudhary BP, Zoetewey DL, McCullagh MJ, Mohanty S.
      Asparagine-linked glycosylation, also known as N-linked glycosylation, is an essential and highly conserved co- and post-translational protein modification in eukaryotes and some prokaryotes. In the central step of this reaction, a carbohydrate moiety is transferred from a lipid-linked donor to the side-chain of a consensus asparagine in a nascent protein as it is synthesized at the ribosome. Complete loss of oligosaccharyltransferase (OST) function is lethal in eukaryotes. This reaction is carried out by a membrane-associated multi-subunit enzyme, OST, localized in the endoplasmic reticulum (ER). The smallest subunit, Ost4, contains a single membrane-spanning helix that is critical for maintaining stability and activity of OST. Mutation of any residue from Met18 to Ile24 of Ost4 destabilizes the enzyme complex, affecting its activity. Here, we report solution NMR structures and molecular dynamics simulations of Ost4 and Ost4V23D in micelles. Our studies revealed that while the point mutation did not impact the structure of the protein, it affected its position and solvent exposure in the membrane mimetic environment. Furthermore, our molecular dynamics simulations of the membrane-bound OST complex containing either WT or V23D mutant demonstrated disruption of most hydrophobic helix-helix interactions between Ost4V23D and transmembrane (TM)12 and TM13 of Stt3. This disengagement of Ost4V23D from the OST complex led to solvent exposure of the D23 residue in the hydrophobic pocket created by these interactions. Our study not only solves the structures of yeast Ost4 subunit and its mutant but also provides a basis for the destabilization of the OST complex and reduced OST activity.
    Keywords:  Congenital disorders of glycosylation; Membrane protein; Molecular dynamics simulations; NMR; Oligosaccharyltransferase (OST)
  13. Mol Cell Proteomics. 2020 Dec;pii: S1535-9476(20)60009-3. [Epub ahead of print]19(12): 2015-2030
    Nie L, Wang C, Li N, Feng X, Lee N, Su D, Tang M, Yao F, Chen J.
      Specific E3 ligases target tumor suppressors for degradation. Inhibition of such E3 ligases may be an important approach to cancer treatment. RNF146 is a RING domain and PARylation-dependent E3 ligase that functions as an activator of the β-catenin/Wnt and YAP/Hippo pathways by targeting the degradation of several tumor suppressors. Tankyrases 1 and 2 (TNKS1/2) are the only known poly-ADP-ribosyltransferases that require RNF146 to degrade their substrates. However, systematic identification of RNF146 substrates have not yet been performed. To uncover substrates of RNF146 that are targeted for degradation, we generated RNF146 knockout cells and TNKS1/2-double knockout cells and performed proteome profiling with label-free quantification as well as transcriptome analysis. We identified 160 potential substrates of RNF146, which included many known substrates of RNF146 and TNKS1/2 and 122 potential TNKS-independent substrates of RNF146. In addition, we validated OTU domain-containing protein 5 and Protein mono-ADP-ribosyltransferase PARP10 as TNKS1/2-independent substrates of RNF146 and SARDH as a novel substrate of TNKS1/2 and RNF146. Our study is the first proteome-wide analysis of potential RNF146 substrates. Together, these findings not only demonstrate that proteome profiling can be a useful general approach for the systemic identification of substrates of E3 ligases but also reveal new substrates of RNF146, which provides a resource for further functional studies.
    Keywords:  E3 ubiquitin ligase; RNF146; TNKS; UbiquitinasesS; cancer biology; label-free quantification; mass spectrometry; protein degradation; substrate identification; substrates; ubiquitin
  14. Nat Commun. 2021 01 11. 12(1): 265
    Shin CS, Meng S, Garbis SD, Moradian A, Taylor RW, Sweredoski MJ, Lomenick B, Chan DC.
      Most mitochondrial precursor polypeptides are imported from the cytosol into the mitochondrion, where they must efficiently undergo folding. Mitochondrial precursors are imported as unfolded polypeptides. For proteins of the mitochondrial matrix and inner membrane, two separate chaperone systems, HSP60 and mitochondrial HSP70 (mtHSP70), facilitate protein folding. We show that LONP1, an AAA+ protease of the mitochondrial matrix, works with the mtHSP70 chaperone system to promote mitochondrial protein folding. Inhibition of LONP1 results in aggregation of a protein subset similar to that caused by knockdown of DNAJA3, a co-chaperone of mtHSP70. LONP1 is required for DNAJA3 and mtHSP70 solubility, and its ATPase, but not its protease activity, is required for this function. In vitro, LONP1 shows an intrinsic chaperone-like activity and collaborates with mtHSP70 to stabilize a folding intermediate of OXA1L. Our results identify LONP1 as a critical factor in the mtHSP70 folding pathway and demonstrate its proposed chaperone activity.
  15. Mol Cell Proteomics. 2019 Sep;pii: S1535-9476(20)31774-6. [Epub ahead of print]18(9): 1705-1720
    Sap KA, Guler AT, Bezstarosti K, Bury AE, Juenemann K, Demmers JA, Reits EA.
      Huntington's disease is caused by a polyglutamine repeat expansion in the huntingtin protein which affects the function and folding of the protein, and results in intracellular protein aggregates. Here, we examined whether this mutation leads to altered ubiquitination of huntingtin and other proteins in both soluble and insoluble fractions of brain lysates of the Q175 knock-in Huntington's disease mouse model and the Q20 wild-type mouse model. Ubiquitination sites are detected by identification of Gly-Gly (diGly) remnant motifs that remain on modified lysine residues after digestion. We identified K6, K9, K132, K804, and K837 as endogenous ubiquitination sites of soluble huntingtin, with wild-type huntingtin being mainly ubiquitinated at K132, K804, and K837. Mutant huntingtin protein levels were strongly reduced in the soluble fraction whereas K6 and K9 were mainly ubiquitinated. In the insoluble fraction increased levels of huntingtin K6 and K9 diGly sites were observed for mutant huntingtin as compared with wild type. Besides huntingtin, proteins with various roles, including membrane organization, transport, mRNA processing, gene transcription, translation, catabolic processes and oxidative phosphorylation, were differently expressed or ubiquitinated in wild-type and mutant huntingtin brain tissues. Correlating protein and diGly site fold changes in the soluble fraction revealed that diGly site abundances of most of the proteins were not related to protein fold changes, indicating that these proteins were differentially ubiquitinated in the Q175 mice. In contrast, both the fold change of the protein level and diGly site level were increased for several proteins in the insoluble fraction, including ubiquitin, ubiquilin-2, sequestosome-1/p62 and myo5a. Our data sheds light on putative novel proteins involved in different cellular processes as well as their ubiquitination status in Huntington's disease, which forms the basis for further mechanistic studies to understand the role of differential ubiquitination of huntingtin and ubiquitin-regulated processes in Huntington's disease.
    Keywords:  Huntington; Label-free quantification; Mass Spectrometry; Neurodegenerative diseases; Post-translational modifications; Ubiquitin
  16. Nat Commun. 2021 01 11. 12(1): 254
    Hansen FM, Tanzer MC, Brüning F, Bludau I, Stafford C, Schulman BA, Robles MS, Karayel O, Mann M.
      Protein ubiquitination is involved in virtually all cellular processes. Enrichment strategies employing antibodies targeting ubiquitin-derived diGly remnants combined with mass spectrometry (MS) have enabled investigations of ubiquitin signaling at a large scale. However, so far the power of data independent acquisition (DIA) with regards to sensitivity in single run analysis and data completeness have not yet been explored. Here, we develop a sensitive workflow combining diGly antibody-based enrichment and optimized Orbitrap-based DIA with comprehensive spectral libraries together containing more than 90,000 diGly peptides. This approach identifies 35,000 diGly peptides in single measurements of proteasome inhibitor-treated cells - double the number and quantitative accuracy of data dependent acquisition. Applied to TNF signaling, the workflow comprehensively captures known sites while adding many novel ones. An in-depth, systems-wide investigation of ubiquitination across the circadian cycle uncovers hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within individual membrane protein receptors and transporters, highlighting new connections between metabolism and circadian regulation.
  17. Mol Cell Proteomics. 2020 Jun;pii: S1535-9476(20)34992-6. [Epub ahead of print]19(6): 971-993
    Kang T, Boland BB, Jensen P, Alarcon C, Nawrocki A, Grimsby JS, Rhodes CJ, Larsen MR.
      The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D.
    Keywords:  Diabetes; beta-granule biogenesis; glycoprotein pathways; glycoproteomics; insulin resistance; insulin secretory pathway; obesity; phosphoproteome; proinsulin biosynthesis; protein degradation; protein folding; protein synthesis; protein-protein interactions; signal transduction; unfolded protein response
  18. Mol Biol Cell. 2021 Jan 15. 32(2): 109-119
    Chao JT, Pina F, Niwa M.
      The endoplasmic reticulum (ER) is one of the largest cytoplasmic organelles in eukaryotic cells and plays a role in many cellular processes, such as the production and quality control of secretory protein, lipid synthesis, and calcium homeostasis. The ER cannot be generated de novo, and thus its proper inheritance during cell division is paramount to the health and survival of the daughter cells. Although previous work has uncovered the cytoskeletal components involved, we still lack a comprehensive understanding of the intricate steps of and the cytoplasmic and membrane-bound components involved in ER inheritance. To directly address these issues, we utilized microfluidics and genetic analyses to show that before nuclear migration, early ER inheritance can be further divided into three distinctive steps. Moreover, we demonstrated that perturbing each of these steps affects the cell's ability to mitigate ER stress. Thus, proper ER inheritance is essential to ensuring a healthy, functional cell.
  19. Mol Cell Proteomics. 2020 Sep;pii: S1535-9476(20)35097-0. [Epub ahead of print]19(9): 1468-1484
    Adams MK, Banks CAS, Thornton JL, Kempf CG, Zhang Y, Miah S, Hao Y, Sardiu ME, Killer M, Hattem GL, Murray A, Katt ML, Florens L, Washburn MP.
      Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.
    Keywords:  Chromatin function or biology; DSSO; SIN3; cross linking; epigenetics; histone deacetylase; nuclear translocation; pathway analysis; protein complex analysis; protein-protein interactions*; subcellular analysis; systems biology*
  20. Molecules. 2021 Jan 08. pii: E287. [Epub ahead of print]26(2):
    Schuren ABC, Boer IGJ, Bouma EM, Van de Weijer ML, Costa AI, Hubel P, Pichlmair A, Lebbink RJ, Wiertz EJHJ.
      To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8+ T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established.
    Keywords:  ER-associated protein degradation (ERAD); HCMV protein US2; HLA class I; UFMylation; dislocation; ubiquitin-fold modifier1 (UFM1)
  21. iScience. 2021 Jan 22. 24(1): 101972
    Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF.
      There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.
    Keywords:  Cell Biology; Functional Aspects of Cell Biology; Organizational Aspects of Cell Biology
  22. Life Sci Alliance. 2021 02;pii: e202000865. [Epub ahead of print]4(2):
    Mendes A, Gigan JP, Rodriguez Rodrigues C, Choteau SA, Sanseau D, Barros D, Almeida C, Camosseto V, Chasson L, Paton AW, Paton JC, Argüello RJ, Lennon-Duménil AM, Gatti E, Pierre P.
      In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.
  23. Mol Diagn Ther. 2021 Jan 12.
    Shen W, Zhang Z, Ma J, Lu D, Lyu L.
      The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
  24. Mol Cell Proteomics. 2020 Jul;pii: S1535-9476(20)34984-7. [Epub ahead of print]19(7): 1236-1247
    Mei S, Ayala R, Ramarathinam SH, Illing PT, Faridi P, Song J, Purcell AW, Croft NP.
      The presentation of post-translationally modified (PTM) peptides by cell surface HLA molecules has the potential to increase the diversity of targets for surveilling T cells. Although immunopeptidomics studies routinely identify thousands of HLA-bound peptides from cell lines and tissue samples, in-depth analyses of the proportion and nature of peptides bearing one or more PTMs remains challenging. Here we have analyzed HLA-bound peptides from a variety of allotypes and assessed the distribution of mass spectrometry-detected PTMs, finding deamidation of asparagine or glutamine to be highly prevalent. Given that asparagine deamidation may arise either spontaneously or through enzymatic reaction, we assessed allele-specific and global motifs flanking the modified residues. Notably, we found that the N-linked glycosylation motif NX(S/T) was highly abundant across asparagine-deamidated HLA-bound peptides. This finding, demonstrated previously for a handful of deamidated T cell epitopes, implicates a more global role for the retrograde transport of nascently N-glycosylated polypeptides from the ER and their subsequent degradation within the cytosol to form HLA-ligand precursors. Chemical inhibition of Peptide:N-Glycanase (PNGase), the endoglycosidase responsible for the removal of glycans from misfolded and retrotranslocated glycoproteins, greatly reduced presentation of this subset of deamidated HLA-bound peptides. Importantly, there was no impact of PNGase inhibition on peptides not containing a consensus NX(S/T) motif. This indicates that a large proportion of HLA-I bound asparagine deamidated peptides are generated from formerly glycosylated proteins that have undergone deglycosylation via the ER-associated protein degradation (ERAD) pathway. The information herein will help train deamidation prediction models for HLA-peptide repertoires and aid in the design of novel T cell therapeutic targets derived from glycoprotein antigens.
    Keywords:  HLA; Immunology; N-glycosylation; de-glycosylation; deamidation; immunopeptidomics; peptides; peptidomics; post-translational modifications
  25. EMBO J. 2021 Jan 13. e104705
    Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K.
      Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
    Keywords:  autophagy; mitochondria; phosphorylation; quality and quantity control; ubiquitin
  26. Proc Natl Acad Sci U S A. 2021 Jan 05. pii: e2017636118. [Epub ahead of print]118(1):
    Asseck LY, Mehlhorn DG, Monroy JR, Ricardi MM, Breuninger H, Wallmeroth N, Berendzen KW, Nowrousian M, Xing S, Schwappach B, Bayer M, Grefen C.
      Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plant Arabidopsis thaliana, most components of the pathway were identified through in silico sequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors of AtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses with AtGET1, and binds to Arabidopsis GET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of other Atget lines, its heterologous expression together with the coreceptor AtGET1 rescues growth defects of Δget1get2 yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 in Arabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.
    Keywords:  ER membrane; GET pathway; SNAREs; root hairs; tail-anchored proteins
  27. Nat Commun. 2021 01 14. 12(1): 374
    Ye Y, Tyndall ER, Bui V, Tang Z, Shen Y, Jiang X, Flanagan JM, Wang HG, Tian F.
      During autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3-PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3-PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.
  28. Mol Cell Proteomics. 2019 May;pii: S1535-9476(20)31609-1. [Epub ahead of print]18(5): 1010-1026
    Hendriks IA, Larsen SC, Nielsen ML.
      ADP-ribosylation is a widespread post-translational modification (PTM) with crucial functions in many cellular processes. Here, we describe an in-depth ADP-ribosylome using our Af1521-based proteomics methodology for comprehensive profiling of ADP-ribosylation sites, by systematically assessing complementary proteolytic digestions and precursor fragmentation through application of electron-transfer higher-energy collisional dissociation (EThcD) and electron transfer dissociation (ETD), respectively. Although ETD spectra yielded higher identification scores, EThcD generally proved superior to ETD in identification and localization of ADP-ribosylation sites regardless of protease employed. Notwithstanding, the propensities of complementary proteases and fragmentation methods expanded the detectable repertoire of ADP-ribosylation to an unprecedented depth. This system-wide profiling of the ADP-ribosylome in HeLa cells subjected to DNA damage uncovered >11,000 unique ADP-ribosylated peptides mapping to >7,000 ADP-ribosylation sites, in total modifying over one-third of the human nuclear proteome and highlighting the vast scope of this PTM. High-resolution MS/MS spectra enabled identification of dozens of proteins concomitantly modified by ADP-ribosylation and phosphorylation, revealing a considerable degree of crosstalk on histones. ADP-ribosylation was confidently localized to various amino acid residue types, including less abundantly modified residues, with hundreds of ADP-ribosylation sites pinpointed on histidine, arginine, and tyrosine residues. Functional enrichment analysis suggested modification of these specific residue types is directed in a spatial manner, with tyrosine ADP-ribosylation linked to the ribosome, arginine ADP-ribosylation linked to the endoplasmic reticulum, and histidine ADP-ribosylation linked to the mitochondrion.
  29. Nat Commun. 2021 01 11. 12(1): 251
    Bailey M, Ivanauskaite A, Grimmer J, Akintewe O, Payne AC, Osborne R, Labandera AM, Etherington RD, Rantala M, Baginsky S, Mulo P, Gibbs DJ.
      Chloroplast function requires the coordinated action of nuclear- and chloroplast-derived proteins, including several hundred nuclear-encoded pentatricopeptide repeat (PPR) proteins that regulate plastid mRNA metabolism. Despite their large number and importance, regulatory mechanisms controlling PPR expression are poorly understood. Here we show that the Arabidopsis NOT4A ubiquitin-ligase positively regulates the expression of PROTON GRADIENT REGULATION 3 (PGR3), a PPR protein required for translating several thylakoid-localised photosynthetic components and ribosome subunits within chloroplasts. Loss of NOT4A function leads to a strong depletion of cytochrome b6f and NAD(P)H dehydrogenase (NDH) complexes, as well as plastid 30 S ribosomes, which reduces mRNA translation and photosynthetic capacity, causing pale-yellow and slow-growth phenotypes. Quantitative transcriptome and proteome analysis of the not4a mutant reveal it lacks PGR3 expression, and that its molecular defects resemble those of a pgr3 mutant. Furthermore, we show that normal plastid function is restored to not4a through transgenic PGR3 expression. Our work identifies NOT4A as crucial for ensuring robust photosynthetic function during development and stress-response, through promoting PGR3 production and chloroplast translation.
  30. Nat Plants. 2021 Jan;7(1): 6-16
    Ban Z, Estelle M.
      Thirty years of research have revealed the fundamental role of the ubiquitin-proteasome system in diverse aspects of cellular regulation in eukaryotes. The ubiquitin-protein ligases or E3s are central to the ubiquitin-proteasome system since they determine the specificity of ubiquitylation. The cullin-RING ligases (CRLs) constitute one large class of E3s that can be subdivided based on the cullin isoform and the substrate adapter. SCF complexes, composed of CUL1 and the SKP1/F-box protein substrate adapter, are perhaps the best characterized in plants. More recently, accumulating evidence has demonstrated the essential roles of CRL3 E3s, consisting of a CUL3 protein and a BTB/POZ substrate adaptor. In this Review, we describe the variety of CRL3s functioning in plants and the wide range of processes that they regulate. Furthermore, we illustrate how different classes of E3s may cooperate to regulate specific pathways or processes.
  31. Mol Cell Proteomics. 2020 Jul;pii: S1535-9476(20)34976-8. [Epub ahead of print]19(7): 1120-1131
    Goebel T, Mausbach S, Tuermer A, Eltahir H, Winter D, Gieselmann V, Thelen M.
      The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), β-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Because these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.
    Keywords:  Proteases; autophagy; lysosome; proteasome; protein degradation; protein turnover; subcellular analysis
  32. Mol Cell Proteomics. 2019 Nov;pii: S1535-9476(20)31765-5. [Epub ahead of print]18(11): 2285-2297
    Chan CJ, Le R, Burns K, Ahmed K, Coyaud E, Laurent EMN, Raught B, Melançon P.
      The Golgi-specific Brefeldin-A resistance factor 1 (GBF1) is the only large GEF that regulates Arf activation at the cis-Golgi and is actively recruited to membranes on an increase in Arf-GDP. Recent studies have revealed that GBF1 recruitment requires one or more heat-labile and protease-sensitive protein factor(s) (Quilty et al., 2018, J. Cell Science, 132). Proximity-dependent biotinylation (BioID) and mass spectrometry from enriched Golgi fractions identified GBF1 proximal proteins that may regulate its recruitment. Knockdown studies revealed C10orf76 to be involved in Golgi maintenance. We find that C10orf76 interacts with GBF1 and rapidly cycles on and off GBF1-positive Golgi structures. More importantly, its depletion causes Golgi fragmentation, alters GBF1 recruitment, and impairs secretion. Homologs were identified in most species, suggesting its presence in the last eukaryotic common ancestor.
    Keywords:  BioID; Cell biology; GBF1; GTPase; biotin; cell secretion; cellular organelles; golgi; imaging; membranes; secretome
  33. Cell Chem Biol. 2021 Jan 06. pii: S2451-9456(20)30519-5. [Epub ahead of print]
    Liang Z, Chan HYE, Lee MM, Chan MK.
      The accumulation of α-synuclein amyloid fibrils in the brain is linked to Parkinson's disease and other synucleinopathies. The intermediate species in the early aggregation phase of α-synuclein are involved in the emergence of amyloid toxicity and considered to be the most neurotoxic. The N-terminal region flanking the non-amyloid-β component domain of α-synuclein has been implicated in modulating its aggregation. Herein, we report the development of a SUMO1-derived peptide inhibitor (SUMO1(15-55)), which targets two SUMO-interacting motifs (SIMs) within this aggregation-regulating region and suppresses α-synuclein aggregation. Molecular modeling, site-directed mutagenesis, and binding studies are used to elucidate the mode of interaction, namely, via the binding of either of the two SIM sequences on α-synuclein to a putative hydrophobic binding groove on SUMO1(15-55). Subsequent studies show that SUMO1(15-55) also reduces α-synuclein-induced cytotoxicity in cell-based and Drosophila disease models.
    Keywords:  Parkinson's disease; SUMO-interacting motif; amyloid; peptide inhibitor; protein aggregation; small ubiquitin-like modifier; α-synuclein; α-synuclein transgenic Drosophila
  34. Cell Biol Int. 2021 Jan 12.
    Wan T, Li X, Li Y.
      The ubiquitin-proteasome system, which is one of the systems for cell protein homeostasis and degradation, happens through the ordered and coordinated action of three type of enzymes, E1 ubiquitin-activating enzyme, E2 ubiquitin-carrier enzyme, E3 ubiquitin-protein ligase. Tripartite motif-containing (TRIM) family proteins are the richest subfamily of Really Interesting New Gene E3 ubiquitin ligases, which play a critical role not only in many biological processes including proliferation, apoptosis, pyroptosis, innate immunity, and autophagy, but also many diseases like cancer, diabetes mellitus, neurodegenerative disease. Growing evidence suggests that TRIM family proteins play a vital role in modulating autophagy, pyroptosis, and diabetes mellitus. The aim of this review is to discuss the role of TRIM proteins in the regulation of autophagy, pyroptosis, diabetes mellitus, and diabetic complications. This article is protected by copyright. All rights reserved.
    Keywords:  cell death regulation; diabetes mellitus; diabetic complications; tripartite motif-containing (TRIM) family proteins; ubiquitin-proteasome system
  35. Int J Biol Macromol. 2021 Jan 08. pii: S0141-8130(20)35387-3. [Epub ahead of print]171 423-427
    Zheng C.
      Membrane-associated RING (really interesting new gene)-cysteine-histidine (CH) (MARCH) ubiquitin ligases belong to a RING finger domain E3 ligases family. So far, eleven members have been found in the MARCH family, which are MARCH 1 to 11. The members of the MARCH family are widely distributed and involve in a variety of cellular functions, including regulation of the immune system, transmembrane transport of proteins, protein stability, endoplasmic reticulum-related degradation, and endosome protein transport. Several seminal studies over the past decade have delineated that MARCH affects viral replication through various mechanisms by regulating the activity of signaling molecules and their expression in the antiviral innate immune responses. Here, we summarize the complex roles of MARCH ligases in the antiviral innate immune signaling pathway and its impact on viral replication in host immune defense systems. A better understanding of this interplay's molecular mechanisms is important concerning the development of new therapeutics targeting viral infections.
    Keywords:  Antiviral innate immunity; E3-ubiquitin ligase; MARCH; Type-I interferons; Ubiquitin
  36. Biochim Biophys Acta Mol Cell Res. 2021 Jan 11. pii: S0167-4889(21)00017-3. [Epub ahead of print] 118963
    Di Gregorio J, Cilenti L, Ambivero CT, Andl T, Liao R, Zervos AS.
      UBXN7 is a cofactor protein that provides a scaffold for both CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes involved in the regulation of the NRF2 and HIF-1α protein levels respectively. NRF2 and HIF-1α are surveillance transcription factors that orchestrate the cellular response to oxidative stress (NRF2) or to hypoxia (HIF-1α). Since mitochondria are the main oxygen sensors as well as the principal producers of ROS, it can be presumed that they may be able to modulate the activity of CRL3KEAP1 and CRL2VHL complexes in response to stress. We have uncovered a new mechanism of such regulation that involves the UBXN7 cofactor protein and its regulation by mitochondrial MUL1 E3 ubiquitin ligase. High level of UBXN7 leads to HIF-1α accumulation, whereas low level of UBXN7 correlates with an increase in NRF2 protein. The reciprocal regulation of HIF-1α and NRF2 by UBXN7 is coordinated under conditions of oxidative stress or hypoxia. In addition, this molecular mechanism leads to different metabolic states; high level of UBXN7 and accumulation of HIF-1α support glycolysis, whereas inactivation of UBXN7 and activation of NRF2 confer increased OXPHOS. We describe a new mechanism by which MUL1 E3 ubiquitin ligase modulates the UBXN7 cofactor protein level and provides a reciprocal regulation of CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes. Furthermore, we delineate how this regulation is reflected in NRF2 and HIF-1α accumulation and determines the metabolic state as well as the adaptive response to mitochondrial stress.
    Keywords:  HIF-1α; MUL1; NRF2; UBXN7; glycolysis; oxidative stress
  37. iScience. 2021 Jan 22. 24(1): 101949
    Huang TN, Shih YT, Lin SC, Hsueh YP.
      Both genetic variations and nutritional deficiency are associated with autism spectrum disorders and other neurological disorders. However, it is less clear whether or how nutritional deficiency and genetic variations influence each other under pathogenic conditions. "Valosin-containing protein" (VCP, also known as p97) is associated with multiple neurological disorders and regulates dendritic spine formation by controlling endoplasmic reticulum formation and protein synthesis efficiency. Increased protein synthesis ameliorates the dendritic spine defects of Vcp-deficient neurons. Therefore, we investigated if Vcp-deficient mice are sensitive to nutritional conditions. Here, we show that social interaction and contextual memory of Vcp-deficient mice are indeed influenced by different dietary protein levels. Moreover, leucine supplementation ameliorates the behavioral deficits and dendritic spine density of Vcp-deficient mice, strengthening evidence for the role of protein synthesis in VCP function. Our study illustrates that genetic variation and nutrient factors cross-talk to influence neuronal and behavioral phenotypes.
    Keywords:  Behavioral Neuroscience; Biological Sciences; Neuroscience
  38. Am J Physiol Lung Cell Mol Physiol. 2021 Jan 13.
    Mitra S, Epshtein Y, Sammani S, Quijada H, Chen W, Bandela M, Desai AA, Garcia JGN, Jacobson JR.
      Increasing evidence suggests an important role for deubiquitinating enzymes (DUBs) in modulating a variety of biological functions and diseases. We previously identified the upregulation of the DUB, ubiquitin carboxyl terminal hydrolase 1 (UCHL1) in murine ventilator-induced lung injury (VILI). However, the role of UCHL1 in modulating vascular permeability, a cardinal feature of acute lung injury (ALI) in general, remains unclear. We investigated the role of UCHL1 in pulmonary endothelial cell (EC) barrier function in vitro and in vivo and examined effects of UCHL1 on VE-cadherin and claudin-5 regulation, important adherens and tight junctional components, respectively. Measurements of transendothelial electrical resistance (TER) confirmed decreased barrier enhancement induced by hepatocyte growth factor (HGF) and increased thrombin-induced permeability in both UCHL1-silenced EC and in EC pretreated with LDN-57444 (LDN), a pharmacologic UCHL1 inhibitor. Additionally, UCHL1 knockdown (siRNA) was associated with decreased expression of VE-cadherin and claudin-5 while silencing of the transcription factor, FoxO1 restored claudin-5 levels. Finally, UCHL1 inhibition in vivo via LDN was associated with increased VILI in a murine model. These findings support a prominent functional role of UCHL1 in regulating lung vascular permeability via alterations in adherens and tight junctions and implicate UCHL1 as an important mediator of ALI.
    Keywords:  UCHL1; enothelial cells; lung vascular permeability
  39. Cell Death Differ. 2021 Jan 11.
    Humphreys LM, Smith P, Chen Z, Fouad S, D'Angiolella V.
      Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
  40. Stem Cell Reports. 2021 Jan 12. pii: S2213-6711(20)30465-3. [Epub ahead of print]16(1): 20-28
    Magee JA, Signer RAJ.
      Adult hematopoietic stem cell (HSC) self-renewal requires precise control of protein synthesis, but fetal and adult HSCs have distinct self-renewal mechanisms and lineage outputs. This raises the question of whether protein synthesis rates change with age. Here, we show that protein synthesis rates decline during HSC ontogeny, yet erythroid protein synthesis rates increase. A ribosomal mutation that impairs ribosome biogenesis (Rpl24Bst/+) disrupts both fetal and adult HSC self-renewal. However, the Rpl24Bst/+ mutation selectively impairs fetal erythropoiesis at differentiation stages that exhibit fetal-specific attenuation of protein synthesis. Developmental changes in protein synthesis thus differentially sensitize hematopoietic stem and progenitor cells to impaired ribosome biogenesis.
    Keywords:  erythroid; erythropoiesis; hematopoiesis; hematopoietic stem cell; progenitor; protein synthesis; proteostasis; ribosome; ribosomopathy; translation
  41. Mol Cell Proteomics. 2019 May;pii: S1535-9476(20)31606-6. [Epub ahead of print]18(5): 968-981
    Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ.
      Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
    Keywords:  Lung cancer; Mass Spectrometry; Proteases*; Proteolysis*; Rhomboid; Secretome; Substrate profiling; Tandem mass tag
  42. PLoS Genet. 2021 Jan 11. 17(1): e1008951
    Andersson R, Eisele-Bürger AM, Hanzén S, Vielfort K, Öling D, Eisele F, Johansson G, Gustafsson T, Kvint K, Nyström T.
      70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70's in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this 'defect' of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.
  43. JCI Insight. 2021 Jan 12. pii: 132778. [Epub ahead of print]
    René P, Lanfray D, Richard D, Bouvier M.
      MC4R mutations represent the largest monogenic cause of obesity, resulting mainly from receptor misfolding and intracellular retention by the cellular quality control system. The present study aimed at determining whether pharmacological chaperones (PC) that restore folding and plasma membrane trafficking by stabilizing near native protein conformation, may represent valid therapeutic avenues for the treatment of melanocortin type 4 receptor (MC4R) linked obesity.To test the therapeutic PC potential, we engineered humanized MC4R mouse models expressing either the wild type (WT) human MC4R or a prevalent obesity-causing mutant (R165W). Administration of a PC able to rescue cell surface expression and functional activity of R165W-hMC4R in cells, restored the anorexigenic response of the R165W-hMC4R obese mice to melanocortin agonist, providing a proof-of-principle for the therapeutic potential of MC4R-targetting PC in vivo. Interestingly, the expression of the WT-hMC4R in mice revealed lower sensitivity of the human receptor to alpha-melanocyte-stimulating hormone (α-MSH) but not β-MSH or MTII, resulting in a lower penetrance obese phenotype in the WT-hMC4R versus R165W-hMC4R mice. In conclusion, we created two new obesity models, one hypomorph highlighting species differences, and one amorphic that provides a pre-clinical model to test the therapeutic potential of PC to treat MC4R-linked obesity.
    Keywords:  G-protein coupled receptors; Melanocortin; Metabolism; Obesity; Therapeutics
  44. Proc Natl Acad Sci U S A. 2021 Jan 05. pii: e2015794118. [Epub ahead of print]118(1):
    Sarbanes SL, Blomen VA, Lam E, Heissel S, Luna JM, Brummelkamp TR, Falck-Pedersen E, Hoffmann HH, Rice CM.
      The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.
    Keywords:  E3 ubiquitin ligase; Mindbomb 1; adenovirus; host factor; viral entry