bims-proteo Biomed News
on Proteostasis
Issue of 2020‒11‒08
forty-eight papers selected by
Eric Chevet
INSERM


  1. Mol Plant. 2020 Oct 30. pii: S1674-2052(20)30378-6. [Epub ahead of print]
    Sun JL, Li JY, Wang MJ, Song ZT, Liu JX.
      The endoplasmic reticulum, chloroplasts, and mitochondria are major plant organelles for protein synthesis, photosynthesis, metabolism, and energy production. Protein homeostasis in these organelles, maintained by a balance between protein synthesis and degradation, is essential for cell functions during plant growth, development, and stress resistance. Nucleus-encoded chloroplast- and mitochondrion-targeted proteins, and ER-resident proteins are imported from the cytosol and undergo modification and maturation within their respective organelles. Protein folding is an error-prone process that is influenced by both developmental signals and environmental cues; a number of mechanisms have evolved to ensure efficient import and proper folding and maturation of proteins in plant organelles. Misfolded or damaged proteins with nonnative conformations are subject to degradation via complementing or competing pathways: intra-organelle proteases, organelle-associated ubiquitin-proteasome system, and selective autophagy of partial or entire organelles. When proteins in nonnative conformations accumulate, the organelle-specific unfolded protein response operates to restore protein homeostasis through reducing protein folding demand, increasing protein folding capacity, and enhancing components involved in proteasome-associated protein degradation and autophagy. This review summarizes recent progress in our understanding of protein quality control in the ER, chloroplasts, and mitochondria in plants, with a focus on the common mechanisms shared in these organelles during protein homeostasis.
    Keywords:  Autophagy; Chloroplast-associated protein degradation; ER-associated protein degradation; Mitochondria-associated protein degradation; protein quality control; unfolded protein response
    DOI:  https://doi.org/10.1016/j.molp.2020.10.011
  2. Elife. 2020 Nov 02. pii: e58114. [Epub ahead of print]9
    Liu S, Jiwei L, Zhen X, Qiu J, Ouyang S, Luo ZQ.
      Legionella pneumophila extensively modulates the host ubiquitin network to create the Legionella-containing vacuole (LCV) for its replication. Many of its virulence factors function as ubiquitin ligases or deubiquitinases (DUBs). Here we identify Lem27 as a DUB that displays a preference for diubiquitin formed by K6, K11 or K48. Lem27 is associated with the LCV where it regulates Rab10 ubiquitination in concert with SidC and SdcA, two bacterial E3 ubiquitin ligases. Structural analysis of the complex formed by an active fragment of Lem27 and the substrate-based suicide inhibitor ubiquitin-propargylamide (PA) reveals that it harbors a fold resembling those in the OTU1 DUB subfamily with a Cys-His catalytic dyad and that it recognizes ubiquitin via extensive hydrogen bonding at six contact sites. Our results establish Lem27 as a deubiquitinase that functions to regulate protein ubiquitination on L. pneumophila phagosomes by counteracting the activity of bacterial ubiquitin E3 ligases.
    Keywords:  infectious disease; microbiology
    DOI:  https://doi.org/10.7554/eLife.58114
  3. PLoS Genet. 2020 Nov 02. 16(11): e1009172
    Xu J, Zhao H, Wang T.
      Mutations in the gene rhodopsin are one of the major causes of autosomal dominant retinitis pigmentosa (adRP). Mutant forms of Rhodopsin frequently accumulate in the endoplasmic reticulum (ER), cause ER stress, and trigger photoreceptor cell degeneration. Here, we performed a genome-wide screen to identify suppressors of retinal degeneration in a Drosophila model of adRP, carrying a point mutation in the major rhodopsin, Rh1 (Rh1G69D). We identified two novel E3 ubiquitin ligases SORDD1 and SORDD2 that effectively suppressed Rh1G69D-induced photoreceptor dysfunction and retinal degeneration. SORDD1/2 promoted the ubiquitination and degradation of Rh1G69D through VCP (valosin containing protein) and independent of processes reliant on the HRD1 (HMG-CoA reductase degradation protein 1)/HRD3 complex. We further demonstrate that SORDD1/2 and HRD1 function in parallel and in a redundant fashion to maintain rhodopsin homeostasis and integrity of photoreceptor cells. These findings identify a new ER-associated protein degradation (ERAD) pathway and suggest that facilitating SORDD1/2 function may be a therapeutic strategy to treat adRP.
    DOI:  https://doi.org/10.1371/journal.pgen.1009172
  4. J Cell Biol. 2021 Jan 04. pii: e202002150. [Epub ahead of print]220(1):
    Wakana Y, Hayashi K, Nemoto T, Watanabe C, Taoka M, Angulo-Capel J, Garcia-Parajo MF, Kumata H, Umemura T, Inoue H, Arasaki K, Campelo F, Tagaya M.
      In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.
    DOI:  https://doi.org/10.1083/jcb.202002150
  5. J Biol Chem. 2020 Nov 03. pii: jbc.RA120.015271. [Epub ahead of print]
    Arystarkhova E, Ozelius LJ, Brashear A, Sweadner KJ.
      Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity.  A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them.  Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties.  Na,K-ATPase is made in endoplasmic reticulum, but glycan-free catalytic α subunit complexes with glycosylated β subunit in the ER to proceed through Golgi and post-Golgi trafficking.  We previously observed classic evidence of protein misfolding in mutations with severe phenotypes:  differences in ER retention of endogenous β1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis.  Here we tested two mutations associated with different phenotypes:  D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment.  Misfolding during biosynthesis in the ER activates the unfolded protein response (UPR), a multi-armed program that enhances protein folding capacity, and if that fails, triggers apoptosis.  L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the UPR.  In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect.  Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD.  Encouragingly, however, 4-phenylbutyrate (4PBA), a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.
    Keywords:  4-phenylbutyrate, 4PBA; N-linked glycosylation; Na+/K+-ATPase; endocytosis; endoplasmic reticulum stress (ER stress); endoplasmic-reticulum-associated protein degradation (ERAD); eukaryotic initiation factor 2 (eIF2); genetic disease; protein misfolding; subcellular fractionation; unfolded protein response (UPR)
    DOI:  https://doi.org/10.1074/jbc.RA120.015271
  6. Proc Natl Acad Sci U S A. 2020 Nov 05. pii: 202013620. [Epub ahead of print]
    Sobala ŁF, Fernandes PZ, Hakki Z, Thompson AJ, Howe JD, Hill M, Zitzmann N, Davies S, Stamataki Z, Butters TD, Alonzi DS, Williams SJ, Davies GJ.
      Mammalian protein N-linked glycosylation is critical for glycoprotein folding, quality control, trafficking, recognition, and function. N-linked glycans are synthesized from Glc3Man9GlcNAc2 precursors that are trimmed and modified in the endoplasmic reticulum (ER) and Golgi apparatus by glycoside hydrolases and glycosyltransferases. Endo-α-1,2-mannosidase (MANEA) is the sole endo-acting glycoside hydrolase involved in N-glycan trimming and is located within the Golgi, where it allows ER-escaped glycoproteins to bypass the classical N-glycosylation trimming pathway involving ER glucosidases I and II. There is considerable interest in the use of small molecules that disrupt N-linked glycosylation as therapeutic agents for diseases such as cancer and viral infection. Here we report the structure of the catalytic domain of human MANEA and complexes with substrate-derived inhibitors, which provide insight into dynamic loop movements that occur on substrate binding. We reveal structural features of the human enzyme that explain its substrate preference and the mechanistic basis for catalysis. These structures have inspired the development of new inhibitors that disrupt host protein N-glycan processing of viral glycans and reduce the infectivity of bovine viral diarrhea and dengue viruses in cellular models. These results may contribute to efforts aimed at developing broad-spectrum antiviral agents and help provide a more in-depth understanding of the biology of mammalian glycosylation.
    Keywords:  antiviral; enzyme; glycosylation; secretory pathway; structural biology
    DOI:  https://doi.org/10.1073/pnas.2013620117
  7. J Mol Biol. 2020 Oct 30. pii: S0022-2836(20)30612-4. [Epub ahead of print]
    Kriegler T, Kiburg G, Hessa T.
      Many unanswered questions remain in understanding the biosynthesis of the peptide hormone insulin. Here we elucidate new aspects in the mechanism of co-translational translocation initiation of pre-proinsulin in the endoplasmic reticulum. We utilize a translational arrest peptide derived from the x-box-binding protein (Xbp1) to induce ribosomal stalling and generate translocation intermediates. We find that the insulin signal sequence is rather weakly gating and requires the assistance of auxiliary translocon components to initiate translocation. Probing the translational intermediates with chemical crosslinking, we identified an early interaction with the translocon-associated protein (TRAP) complex. The TRAPβ subunit interacts with pre-proinsulin before the peptide enters the Sec61 translocon channel in a signal sequence-dependent manner. We describe the substrate sequence determinants that are recognized by TRAP on the cytosolic site of the membrane to facilitate substrate-specific opening of the Sec61 translocon channel. Our findings support the hypothesis that the TRAP-dependence is in part determined by the content of glycine and proline residues mainly within the signal sequence.
    Keywords:  Co-translation folding; ER translocation; Pre-proinsulin; TRAP complex; Xbp1
    DOI:  https://doi.org/10.1016/j.jmb.2020.10.028
  8. Toxicol Appl Pharmacol. 2020 Nov 01. pii: S0041-008X(20)30433-6. [Epub ahead of print] 115307
    Delaney P, Nair AR, Palmer C, Khan N, Sadler KC.
      Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
    Keywords:  Arsenic; ER stress; Liver; Oxidative stress; Unfolded protein response; Zebrafish
    DOI:  https://doi.org/10.1016/j.taap.2020.115307
  9. Nat Commun. 2020 11 05. 11(1): 5594
    Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC, Zode GS.
      The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
    DOI:  https://doi.org/10.1038/s41467-020-19352-1
  10. J Mol Biol. 2020 Nov 02. pii: S0022-2836(20)30614-8. [Epub ahead of print]
    Ahmed N, Friedrich UA, Sormanni P, Ciryam P, Altman NS, Bukau B, Kramer G, O'Brien EP.
      Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes.
    Keywords:  Translation; amino acid pairs; elongation rates; ribosome profiling
    DOI:  https://doi.org/10.1016/j.jmb.2020.10.030
  11. J Biol Chem. 2020 Nov 05. pii: jbc.RA120.015420. [Epub ahead of print]
    Wang JQ, Lin ZC, Li LL, Zhang SF, Li WH, Liu W, Song BL, Luo J.
      Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase mediating degradation of low-density lipoprotein (LDL) receptor (LDLR). IDOL also controls its own stability through autoubiquitination, primarily at lysine 293. Whether IDOL may undergo other forms of post-translational modification is unknown. In this study, we show that IDOL can be modified by small ubiquitin-like modifier 1 (SUMO1) at the K293 residue at least. The SUMOylation of IDOL counteracts its ubiquitination and augments IDOL protein levels. SUMOylation and the associated increase of IDOL protein are effectively reversed by SUMO specific peptidase 1 (SENP1) in an activity-dependent manner. We further demonstrate that SENP1 affects LDLR protein levels by modulating IDOL. Overexpression of SENP1 increases LDLR protein levels and enhances LDL uptake in cultured cells. On the contrary, loss of SENP1 lowers LDLR levels in an IDOL-dependent manner and reduces LDL endocytosis. Collectively, our results reveal SUMOylation as a new regulatory post-translational modification of IDOL, and suggest that SENP1 positively regulates the LDLR pathway via deSUMOylation of IDOL and may therefore be exploited for the treatment of cardiovascular disease.
    Keywords:  LDL receptor; SUMO specific peptidase; deSUMOylation; inducible degrader of the low-density lipoprotein receptor (IDOL); low-density lipoprotein (LDL); post-translational modification (PTM); receptor endocytosis; sumoylation; ubiquitin ligase; ubiquitination
    DOI:  https://doi.org/10.1074/jbc.RA120.015420
  12. Cells. 2020 Nov 04. pii: E2416. [Epub ahead of print]9(11):
    Hiebel C, Stürner E, Hoffmeister M, Tascher G, Schwarz M, Nagel H, Behrends C, Münch C, Behl C.
      The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.
    Keywords:  BAG3; autophagy; interactome; protein quality control; proteostasis; stress response
    DOI:  https://doi.org/10.3390/cells9112416
  13. FEBS J. 2020 Nov 01.
    Johnston HE, Samant RS.
      Protein misfolding is a major driver of ageing-associated frailty and disease pathology. Although all cells possess multiple, well-characterised protein quality control systems to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein homeostasis ('proteostasis') in health-and how their dis-integration contributes to disease-is still an exciting and fast-paced area of research. Under physiological conditions, the predominant route for misfolded protein clearance involves ubiquitylation and proteasome-mediated degradation. When the capacity of this route is overwhelmed-as happens during conditions of acute environmental stress, or chronic ageing-related decline-alternative routes for protein quality control are activated. In this review, we summarise our current understanding of how proteasome-targeted misfolded proteins are re-trafficked to alternative protein quality control routes such as juxta-nuclear sequestration and selective autophagy when the ubiquitin-proteasome system is compromised. We also discuss the molecular determinants of these alternative protein quality control systems, attempt to clarify distinctions between various cytoplasmic spatial quality control inclusion bodies (e.g., Q-bodies, p62-bodies, JUNQ, aggresomes, and aggresome-like induced structures 'ALIS'), and speculate on emerging concepts in the field that we hope will spur future research-with the potential to benefit the rational development of healthy ageing strategies.
    Keywords:  PQC; cancer; chaperone; heat shock protein; neurodegeneration; protein aggregate; protein degradation; protein triage; ubiquitin; ubiquitination
    DOI:  https://doi.org/10.1111/febs.15617
  14. Aging (Albany NY). 2020 Nov 03. 12
    Yang D, Wang Q, Wei G, Wu J, Zhu YC, Zhu Q, Ni T, Liu X, Zhu YZ.
      Vascular endothelial cell senescence and endoplasmic reticulum (ER) stress induced unfolded protein response (UPR) are two critical contributors to individual aging. However, whether these two biological events have crosstalk and are controlled by shared upstream regulators are largely unknown. Here, we found PARP16, a member of the Poly (ADP-ribose) polymerases family that tail-anchored ER transmembrane, was upregulated in angiotensin II (Ang II)-induced vascular aging and promoted UPR. Further, PARP16 was epigenetically upregulated by Smyd3, a histone H3 lysine 4 methyltransferase that bound to the promotor region of Parp16 gene and increased H3K4me3 level to activate its host gene's transcription. Intervention of either Smyd3 or PARP16 ameliorated vascular aging associated phenotypes in both cell and mice models. This study identified Smyd3-PARP16 as a novel signal axis in regulating UPR and endothelial senescence, and targeting this axis has implications in preventing vascular aging and related diseases.
    Keywords:  PARP16; Smyd3; angiotensin II; endoplasmic reticulum; vascular endothelial cell
    DOI:  https://doi.org/10.18632/aging.103895
  15. Mol Cell. 2020 Oct 26. pii: S1097-2765(20)30720-6. [Epub ahead of print]
    Adachi Y, Kato T, Yamada T, Murata D, Arai K, Stahelin RV, Chan DC, Iijima M, Sesaki H.
      Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria. Here, we report that Drp1 directly shapes peripheral ER tubules in human and mouse cells. This ER-shaping activity is independent of GTP hydrolysis and located in a highly conserved peptide of 18 amino acids (termed D-octadecapeptide), which is predicted to form an amphipathic α helix. Synthetic D-octadecapeptide tubulates liposomes in vitro and the ER in cells. ER tubules formed by Drp1 promote mitochondrial division by facilitating ER-mitochondria interactions. Thus, Drp1 functions as a two-in-one protein during mitochondrial division, with ER tubulation and mechano-GTPase activities.
    Keywords:  Drp1; mitochondria; mitochondrial division; organelle contact sites; phosphaditic acid; the endoplasmic reticulum
    DOI:  https://doi.org/10.1016/j.molcel.2020.10.013
  16. Immunol Cell Biol. 2020 Nov 01.
    Crosse KM, Monson EA, Dumbrepatil AB, Smith M, Tseng YY, Van der Hoek KH, Revill PA, Saker S, Tscharke DC, Marsh ENG, Beard MR, Helbig KJ.
      Viperin is an interferon-inducible protein that is pivotal for eliciting an effective immune response against an array of diverse viral pathogens. Here we describe a mechanism of viperin's broad antiviral activity by demonstrating the protein's ability to synergistically enhance the innate immune dsDNA signalling pathway to limit viral infection. Viperin co-localised with the key signalling molecules of the innate immune dsDNA sensing pathway, STING and TBK1; binding directly to STING and inducing enhanced K63-linked polyubiquitination of TBK1. Subsequent analysis identified viperin's necessity to bind the cytosolic iron-sulphur assembly component 2A, to prolong its enhancement of the type-I interferon response to aberrant dsDNA. Here we show that viperin facilitates the formation of a signalling enhanceosome, to coordinate efficient signal transduction following activation of the dsDNA signalling pathway; which results in an enhanced antiviral state. We also provide evidence for viperin's radical SAM enzymatic activity to self-limit its immunomodulatory functions. These data further define viperin's role as a positive regulator of innate immune signalling, offering a mechanism of viperin's broad antiviral capacity.
    Keywords:  CIA2A; STING; interferon; radical SAM enzyme; viperin
    DOI:  https://doi.org/10.1111/imcb.12420
  17. Sci China Life Sci. 2020 Oct 30.
    Liu BQ, Jin J, Li YY.
      Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly targeted by endogenous and exogenous proteins in an ubiquitin-dependent manner. However, few reviews have summarized how host E3 ligases/DUBs or viral proteins regulate IRF stability and activity. Additionally, with recent technological developments, details about the ubiquitination of IRFs have been continuously revealed. As knowledge of how these proteins function and interact with IRFs may facilitate a better understanding of the regulation of IRFs in immune responses or other biological processes, we summarized current studies on the direct ubiquitination of IRFs, with an emphasis on how these proteins interact with IRFs and affect their activities, which may provide exciting targets for drug development by regulating the functions of specific E3 ligases.
    Keywords:  E3 ubiquitin ligase; IRFs; activation; degradation; ubiquitination; viral proteins
    DOI:  https://doi.org/10.1007/s11427-020-1796-0
  18. J Cell Physiol. 2020 Nov 01.
    Wang D, Ma H, Zhao Y, Zhao J.
      Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
    Keywords:  DUBs; USP14; infection; neurodegenerative diseases; the ubiquitin-proteasome system; tumorigenesis
    DOI:  https://doi.org/10.1002/jcp.30124
  19. Blood. 2020 Nov 04. pii: blood.2020007975. [Epub ahead of print]
    Liu L, Inoki A, Fan K, Mao F, Shi G, Jin X, Zhao M, Ney G, Jones MA, Sun S, Dou Y, Inoki K, Qi L, Li Q.
      Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum associated degradation (ERAD) governs the function of quiescent hematopoietic stem cells (HSCs). The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyper-proliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mTOR signalling. Furthermore, we identify Rheb, an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.
    DOI:  https://doi.org/10.1182/blood.2020007975
  20. J Cell Sci. 2020 Nov 05. pii: jcs250449. [Epub ahead of print]133(21):
    Pallotta MT, Nickel W.
      Fibroblast growth factor 2 (FGF2) and interleukin 1β (IL-1β) were among the earliest examples of a subclass of proteins with extracellular functions that were found to lack N-terminal secretory signal peptides and were shown to be secreted in an ER- and Golgi-independent manner. Many years later, a number of alternative secretory pathways have been discovered, processes collectively termed unconventional protein secretion (UPS). In the course of these studies, unconventional secretion of FGF2 and IL-1β were found to be based upon distinct pathways, mechanisms and molecular machineries. Following a concise introduction into various pathways mediating unconventional secretion and transcellular spreading of proteins, this Cell Science at a Glance poster article aims at a focused analysis of recent key discoveries providing unprecedented detail about the molecular mechanisms and machineries driving FGF2 and IL-1β secretion. These findings are also highly relevant for other unconventionally secreted cargoes that, like FGF2 and IL1β, exert fundamental biological functions in biomedically relevant processes, such as tumor-induced angiogenesis and inflammation.
    Keywords:  FGF2; Fibroblast growth factor 2; IL-1β; Interleukin 1β; Unconventional protein secretion
    DOI:  https://doi.org/10.1242/jcs.250449
  21. Int J Mol Sci. 2020 Oct 29. pii: E8016. [Epub ahead of print]21(21):
    Dahlby T, Simon C, Backe MB, Dahllöf MS, Holson E, Wagner BK, Böni-Schnetzler M, Marzec MT, Lundh M, Mandrup-Poulsen T.
      Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced β-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the β-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. β-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation. Small molecule inhibitors of EZH2 histone methyltransferase activity rescued human islets from glucolipotoxicity-induced apoptosis. Moreover, EZH2 knockdown cells were protected against glucolipotoxicity-induced downregulation of the protective non-canonical Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) pathway. We conclude that EZH2 deficiency protects from glucolipotoxicity-induced ER stress, apoptosis and downregulation of the non-canonical NFκB pathway, but not from insulin secretory dysfunction. The mechanism likely involves transcriptional regulation via EZH2 functioning as a methyltransferase and/or as a methylation-dependent transcription factor.
    Keywords:  ER stress; GLT; NFκB; diabetes; histone deacetylases; histone methyltransferase; insulin secretion
    DOI:  https://doi.org/10.3390/ijms21218016
  22. Proc Natl Acad Sci U S A. 2020 Nov 05. pii: 201920323. [Epub ahead of print]
    Carter SD, Mamede JI, Hope TJ, Jensen GJ.
      Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.
    Keywords:  TRIM5α-body; autophagy; cryo-CLEM/ECT; endoplasmic reticulum; hexagonal nets
    DOI:  https://doi.org/10.1073/pnas.1920323117
  23. Mol Omics. 2020 Nov 02.
    Kumar R, Chhikara BS, Gulia K, Chhillar M.
      Network coordinates of cellular processes (proteostasis, proteolysis, and endocytosis), and molecular chaperones are the key complements in the cell machinery and processes. Specifically, cellular pathways are responsible for the conformational maintenance, cellular concentration, interactions, protein synthesis, disposal of misfolded proteins, localization, folding, and degradation. The failure of cellular processes and pathways disturbs structural proteins and the nucleation of amyloids. These mishaps further initiate amyloid polymorphism, transmissibility, co-aggregation of pathogenic proteins in tissues and cells, prion strains, and mechanisms and pathways for toxicity. Consequently, these conditions favor and lead to the formation of elongated amyloid fibrils consisting of many-stranded β-sheets (N,N-terminus and C,C-terminus), and abnormal fibrous, extracellular, proteinaceous deposits. Finally, these β-sheets deposit, and cells fail to degrade them effectively. The essential torsion angles (φ, ψ, and ω) define the conformation of proteins and their architecture. Cells initiate several transformations and pathways during the regulation of protein homeostasis based on the requirements for the functioning of the cell, which are governed by ATP-dependent proteases. In this process, the kinetics of the molding/folding phenomenon is disturbed, and subsequently, it is dominated by cross-domain misfolding intermediates; however, simultaneously, it is opposed by small stretching forces, which naturally exist in the cell. The ubiquitin/proteasome system deals with damaged proteins, which are not refolded by the chaperone-type machinery. Ubiquitin-protein ligases (E3-Ub) participate in all the cellular activity initiated and governed by molecular chaperones to stabilize the cellular proteome and participate in the degradation phenomenon implemented for damaged proteins. Optical tweezers, a single-resolution based technique, disclose the folding pathway of linear chain proteins, which is how they convert themselves into a three-dimensional architecture. Further, DNA-protein conjugation analysis is performed to obtain folding energies as single-molecule kinetic and thermodynamic data.
    DOI:  https://doi.org/10.1039/d0mo00085j
  24. Ageing Res Rev. 2020 Oct 29. pii: S1568-1637(20)30338-X. [Epub ahead of print] 101203
    Sun-Wang JL, Ivanova S, Zorzano A.
      Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
    Keywords:  Ageing; UPS-autophagy crosstalk; autophagy; proteostasis; ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.arr.2020.101203
  25. Mol Oncol. 2020 Nov 05.
    Deng R, Guo Y, Li L, He J, Qiang Z, Zhang H, Chen R, Wang Y, Zhao X, Yu J.
      Deubiquitinase BAP1 is an important tumor suppressor in several malignancies, but its functions and critical substrates in prostate cancer (PCa) remain unclear. Here, we report that the mRNA and protein expression levels of BAP1 are downregulated in clinical PCa specimens. BAP1 can physically bind to and deubiquitinate PTEN, which inhibits the ubiquitination-mediated degradation of PTEN and thus stabilizes PTEN protein. Ectopically expressed BAP1 in PCa cells increases PTEN protein level and subsequently inhibits the AKT signaling pathway, thus suppressing PCa progression. Conversely, knockdown of BAP1 in PCa cells leads to the decrease of PTEN protein level and the activation of the Akt signaling pathway, therefore promoting malignant transformation and cancer metastasis. However, these can be reversed by the re-expression of PTEN. More importantly, we found that BAP1 protein level positively correlates with PTEN in a substantial fraction of human cancers. These findings demonstrate that BAP1 is an important deubiquitinase of PTEN for its stability and the BAP1-PTEN signaling axis plays a crucial role in tumor suppression.
    Keywords:  BAP1; PTEN; cancer progression; deubiquitination; prostate cancer
    DOI:  https://doi.org/10.1002/1878-0261.12844
  26. Neuron. 2020 Oct 28. pii: S0896-6273(20)30773-X. [Epub ahead of print]
    Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht MT, Krause E, Maritzen T, Schmitz D, Haucke V.
      Neurons are known to rely on autophagy for removal of defective proteins or organelles to maintain synaptic neurotransmission and counteract neurodegeneration. In spite of its importance for neuronal health, the physiological substrates of neuronal autophagy in the absence of proteotoxic challenge have remained largely elusive. We use knockout mice conditionally lacking the essential autophagy protein ATG5 and quantitative proteomics to demonstrate that loss of neuronal autophagy causes selective accumulation of tubular endoplasmic reticulum (ER) in axons, resulting in increased excitatory neurotransmission and compromised postnatal viability in vivo. The gain in excitatory neurotransmission is shown to be a consequence of elevated calcium release from ER stores via ryanodine receptors accumulated in axons and at presynaptic sites. We propose a model where neuronal autophagy controls axonal ER calcium stores to regulate neurotransmission in healthy neurons and in the brain.
    Keywords:  autophagy, ERphagy, presynapse, neurotransmission, endoplasmic reticulum, calcium, ryanodine receptor
    DOI:  https://doi.org/10.1016/j.neuron.2020.10.005
  27. Neuropharmacology. 2020 Nov 03. pii: S0028-3908(20)30440-8. [Epub ahead of print] 108372
    Srivastava AK, Choudhury SR, Karmakar S.
      Epigenetic polycomb repressor complex-1 subunit BMI-1 plays a pivotal role in the process of gene repression to maintain the self-renewal and differentiation state of neurogenic tissues. Accumulating reports links lower expression of BMI-1 fails to regulate the repression of anti-oxidant response genes disrupt mitochondrial homeostasis underlying neurodegeneration. Interestingly, this negative relation between BMI-1 function and neurodegeneration is distinct but has not been generalized as a potential biomarker particularly in Parkinson's disease (PD). Hyperphosphorylated BMI-1 undergoes canonical polycomb E3 ligase function loss, thereby leads to reduce monoubiquitylation of histone 2A at lysine 119 (H2AK119ub) corroborates cellular accumulation of α-synuclein protein phosphorylated at serine 129 (pα-SYN (S129). In general, neuroprotectant suppress pα-SYN (S129) level turns ineffective upon depletion of neuronal BMI-1. Neuroprotectant exposure suppresses the cellular pα-SYN (S129) and maintains the BMI-1 level. The pharmacological inhibition and activation of proteasomal machinery promote the cellular accumulation and degradation of neuronal pα-SYN (S129), respectively. Mechanistically, accumulated pα-SYN (S129) priorly complexed with BMI-1 undergoes ubiquitin-dependent proteasomal degradation. These findings linked the unestablished non-canonical role of BMI-1 in the clearance of pathological α-SYN and suspected to be a novel therapeutic target in PD.
    Keywords:  Alpha-synuclein; BMI-1; Epigenetic polycomb repressor complex; Parkinson's disease; Ubiquitin-dependent proteasome pathway
    DOI:  https://doi.org/10.1016/j.neuropharm.2020.108372
  28. Mol Cell. 2020 Nov 05. pii: S1097-2765(20)30687-0. [Epub ahead of print]80(3): 437-451.e6
    Yao Y, Hong S, Ikeda T, Mori H, MacDougald OA, Nada S, Okada M, Inoki K.
      Amino-acid-induced lysosomal mechanistic target of rapamycin complex 1 (mTORC1) localization through the Rag GTPases is a critical step for its activation by Rheb GTPase. However, how the mTORC1 interacts with Rheb on the lysosome remains elusive. We report that amino acids enhance the polyubiquitination of Rheb (Ub-Rheb), which shows a strong binding preference for mTORC1 and supports its activation, while the Ub-Rheb is subjected to subsequent degradation. Mechanistically, we identified ATXN3 as a Ub-Rheb deubiquitinase whose lysosomal localization is blocked by active Rag heterodimer in response to amino acid stimulation. Consistently, cells lacking functional Rag heterodimer on the lysosome accumulate Ub-Rheb, and blockade of its degradation instigates robust lysosomal mTORC1 localization and its activation without the Ragulator-Rag system. Thus, polyubiquitination of Rheb is an important post-translational modification, which facilitates the binding of mTORC1 to Rheb on the lysosome and is another crosstalk between the amino acid and growth factor signaling for mTORC1 activation.
    Keywords:  ATXN3; Rag; Ragulator; Rheb; amino acids; deubiquitination; lysosome; mTORC1; ubiquitin
    DOI:  https://doi.org/10.1016/j.molcel.2020.10.004
  29. Proc Natl Acad Sci U S A. 2020 Nov 05. pii: 202010908. [Epub ahead of print]
    Rege NK, Liu M, Yang Y, Dhayalan B, Wickramasinghe NP, Chen YS, Rahimi L, Guo H, Haataja L, Sun J, Ismail-Beigi F, Phillips NB, Arvan P, Weiss MA.
      Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to β-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.
    Keywords:  evolutionary medicine; folding efficiency; protein folding; protein structure; unfolded protein response
    DOI:  https://doi.org/10.1073/pnas.2010908117
  30. Proc Natl Acad Sci U S A. 2020 Nov 02. pii: 202014228. [Epub ahead of print]
    Liese S, Wenzel EM, Kjos I, Rojas Molina R, Schultz SW, Brech A, Stenmark H, Raiborg C, Carlson A.
      As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.
    Keywords:  ILV formation; protein crowding; upstream ESCRT
    DOI:  https://doi.org/10.1073/pnas.2014228117
  31. Mol Cell. 2020 Oct 27. pii: S1097-2765(20)30724-3. [Epub ahead of print]
    Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER.
      The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.
    Keywords:  UCH37; UCHL5; branched ubiquitin chains; deubiquitinase; proteasome; ubiquitin
    DOI:  https://doi.org/10.1016/j.molcel.2020.10.017
  32. Hypertension. 2020 Nov 02. HYPERTENSIONAHA12015487
    Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M.
      The HECT (homologous to the E6-AP carboxyl terminus)-type ubiquitin E3 ligase ITCH is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation. Disheveled proteins (Dvl1 [disheveled protein 1], Dvl2, and Dvl3) are the main components of the Wnt/β-catenin signaling pathway, which is involved in cardiac hypertrophy. The aim of this study was to examine the role of ITCH during development of cardiac hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type mice. Cardiac hypertrophy after TAC was attenuated in ITCH-Tg mice, and the survival rate was higher for ITCH-Tg mice than for wild-type mice. Protein interaction between ITCH and Dvls was confirmed with immunoprecipitation in vivo and in vitro. Expression of key molecules of the Wnt/β-catenin signaling pathway (Dvl1, Dvl2, GSK3β [glycogen synthase kinase 3β], and β-catenin) was inhibited in ITCH-Tg mice compared with wild-type mice. Notably, the ubiquitination level of Dvl proteins increased in ITCH-Tg mice. Protein and mRNA expression levels of ITCH increased in response to Wnt3a stimulation in neonatal rat cardiomyocytes. Knockdown of ITCH using small-interfering RNA increased cardiomyocyte size and augmented protein expression levels of Dvl proteins, phospho-GSK3β, and β-catenin after Wnt3a stimulation in cardiomyocytes. Conversely, overexpression of ITCH attenuated cardiomyocyte hypertrophy and decreased protein expression levels of Dvl proteins, phospho-GSK3β and β-catenin. In conclusion, ITCH targets Dvl proteins for ubiquitin-proteasome degradation in cardiomyocytes and attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway.
    Keywords:  beta catenin; hypertrophy; myocytes, cardiac; phosphorylation; ubiquitin
    DOI:  https://doi.org/10.1161/HYPERTENSIONAHA.120.15487
  33. Gastric Cancer. 2020 Nov 07.
    Zhang L, Liu Q, Liu KW, Qin ZY, Zhu GX, Shen LT, Zhang N, Liu BY, Che LR, Li JY, Wang T, Wen LZ, Liu KJ, Guo Y, Yin XR, Wang XW, Zhou ZH, Xiao HL, Cui YH, Bian XW, Lan CH, Chen D, Wang B.
      BACKGROUND: Aberrant activation of Wnt/β-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/β-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity.METHODS: The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/β-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of β-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo.
    RESULTS: Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with β-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase β-Trcp1 for β-catenin binding, thereby decreasing β-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner β-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with β-catenin expression levels.
    CONCLUSIONS: Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/β-catenin signaling via SHARPIN-mediated stabilization of β-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive β-catenin signaling in a subset of human gastric cancers.
    Keywords:  Gastric cancer; Linear ubiquitination; SHARPIN; Wnt/β-catenin signaling
    DOI:  https://doi.org/10.1007/s10120-020-01138-5
  34. Nat Commun. 2020 11 04. 11(1): 5580
    Lee PT, Liévens JC, Wang SM, Chuang JY, Khalil B, Wu HE, Chang WC, Maurice T, Su TP.
      In a subgroup of patients with amyotrophic lateral sclerosis (ALS)/Frontotemporal dementia (FTD), the (G4C2)-RNA repeat expansion from C9orf72 chromosome binds to the Ran-activating protein (RanGAP) at the nuclear pore, resulting in nucleocytoplasmic transport deficit and accumulation of Ran in the cytosol. Here, we found that the sigma-1 receptor (Sig-1R), a molecular chaperone, reverses the pathological effects of (G4C2)-RNA repeats in cell lines and in Drosophila. The Sig-1R colocalizes with RanGAP and nuclear pore proteins (Nups) and stabilizes the latter. Interestingly, Sig-1Rs directly bind (G4C2)-RNA repeats. Overexpression of Sig-1Rs rescues, whereas the Sig-1R knockout exacerbates, the (G4C2)-RNA repeats-induced aberrant cytoplasmic accumulation of Ran. In Drosophila, Sig-1R (but not the Sig-1R-E102Q mutant) overexpression reverses eye necrosis, climbing deficit, and firing discharge caused by (G4C2)-RNA repeats. These results on a molecular chaperone at the nuclear pore suggest that Sig-1Rs may benefit patients with C9orf72 ALS/FTD by chaperoning the nuclear pore assembly and sponging away deleterious (G4C2)-RNA repeats.
    DOI:  https://doi.org/10.1038/s41467-020-19396-3
  35. Curr Med Chem. 2020 Nov 05.
    Bozko M, Bozko P.
      
    Keywords:  Endoplasmic reticulum; conditioned media; unfolded protein response
    DOI:  https://doi.org/10.2174/0929867327999201105163402
  36. Cancer Res. 2020 Nov 06. pii: canres.3922.2019. [Epub ahead of print]
    Tomihara H, Carbone F, Perelli L, Huang JK, Soeung M, Rose JL, Robinson FS, Lissanu Deribe Y, Feng N, Takeda M, Inoue A, Deem AK, Maitra A, Msaouel P, Tannir NM, Draetta GF, Bristow CA, Carugo A, Genovese G.
      Cellular de-differentiation is a key mechanism driving cancer progression. Acquisition of mesenchymal features has been associated with drug resistance, poor prognosis, and disease relapse in many tumor types. Therefore, successful targeting of tumors harboring these characteristics is a priority in oncology practice. The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex has also emerged as a critical player in tumor progression, leading to the identification of several SWI/SNF complex genes as potential disease biomarkers and targets of anti-cancer therapies. AT-rich interaction domain-containing protein 1A (ARID1A) is a component of SWI/SNF, and mutations in ARID1A represent one of the most frequent molecular alterations in human cancers. ARID1A mutations occur in ~10% of pancreatic ductal adenocarcinomas (PDAC), but whether these mutations confer a therapeutic opportunity remains unclear. Here we demonstrate that loss of ARID1A promotes an epithelial-mesenchymal transition (EMT) phenotype and sensitizes PDAC cells to a clinical inhibitor of HSP90, NVP-AUY922, both in vitro and in vivo. While loss of ARID1A alone did not significantly affect proliferative potential or rate of apoptosis, ARID1A-deficient cells were sensitized to HSP90 inhibition, potentially by promoting the degradation of intermediate filaments driving EMT, resulting in cell death. Our results describe a mechanistic link between ARID1A defects and a quasi-mesenchymal phenotype, suggesting that deleterious mutations in ARID1A associated with protein loss exhibits potential as a biomarker for PDAC patients who may benefit by HSP90-targeting drugs treatment.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-19-3922
  37. EMBO Rep. 2020 Nov 02. e51462
    Hamid SM, Citir M, Terzi EM, Cimen I, Yildirim Z, Dogan AE, Kocaturk B, Onat UI, Arditi M, Weber C, Traynor-Kaplan A, Schultz C, Erbay E.
      The ER-bound kinase/endoribonuclease (RNase), inositol-requiring enzyme-1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1's one known, specific RNA target, X box-binding protein-1 (XBP1) or the RNA substrates of IRE1-dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide-derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross-talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1's RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3 ) 5-phosphatase-2 (INPPL1) is a direct target of miR-2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3 /PIP2 ratio and anabolic mTOR signaling by the IRE1-induced miR-2137 demonstrates how the ER can provide a critical input into cell growth decisions.
    Keywords:  ER stress; hyperlipidemia; mTOR signaling; macrophage; microRNA
    DOI:  https://doi.org/10.15252/embr.202051462
  38. Cell. 2020 Nov 03. pii: S0092-8674(20)31380-5. [Epub ahead of print]
    Persson LB, Ambati VS, Brandman O.
      Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.
    Keywords:  ATP; diffusion; glycogen; heat shock; homeostasis; phase separation; starvation; stress response; trehalose; viscosity
    DOI:  https://doi.org/10.1016/j.cell.2020.10.017
  39. Elife. 2020 Nov 02. pii: e60151. [Epub ahead of print]9
    Ruan H, Li X, Xu X, Leibowitz BJ, Tong J, Chen L, Ao L, Xing W, Luo J, Yu Y, Schoen RE, Sonenberg N, Lu X, Zhang L, Yu J.
      To better understand a role of eIF4E S209 in oncogenic translation, we generated EIF4ES209A/+ heterozygous knockin (4EKI) HCT 116 human colorectal cancer (CRC) cells. 4EKI had little on total eIF4E levels, cap binding or global translation, while markedly reduced HCT 116 cell growth in spheroids and mice, and CRC organoid growth. 4EKI strongly inhibited Myc and ATF4 translation, the integrated Stress Response (ISR)-dependent glutamine metabolic signature, AKT activation and proliferation in vivo. 4EKI inhibited polyposis in ApcMin/+ mice by suppressing Myc protein and AKT activation. Furthermore, p-eIF4E was highly elevated in CRC precursor lesions in mouse and human. p-eIF4E cooperated with mutant KRAS to promote Myc and ISR-dependent glutamine addiction in various CRC cell lines, characterized by increased cell death, transcriptomic heterogeneity and immune suppression upon deprivation. These findings demonstrate a critical role of eIF4E S209-dependent translation in Myc and stress-driven oncogenesis and as a potential therapeutic vulnerability.
    Keywords:  cancer biology; human; mouse
    DOI:  https://doi.org/10.7554/eLife.60151
  40. Cell Death Differ. 2020 Oct 31.
    Dang F, Nie L, Wei W.
      Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development.
    DOI:  https://doi.org/10.1038/s41418-020-00648-0
  41. Bioessays. 2020 Nov 06. e2000147
    Wang L, Yu J, Wang CC.
      Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple ways, including posttranslational modification and substrate/ligand binding. Here, we summarize recent advances in understanding the function and regulation of PDI in different pathological and physiological events. We propose that the multifunctional roles of PDI are regulated by multiple mechanisms. Furthermore, we discuss future directions for the study of PDI, emphasizing how different regulatory modes are linked to the conformational changes and biological functions of PDI in the context of diverse pathophysiologies.
    Keywords:  chaperone; posttranslational modification (PTM); protein disulfide isomerase (PDI); redox; regulation; structure
    DOI:  https://doi.org/10.1002/bies.202000147
  42. Proc Natl Acad Sci U S A. 2020 Nov 02. pii: 202014470. [Epub ahead of print]
    Song Z, Wei W, Xiao W, Al-Saleem ED, Nejati R, Chen L, Yin J, Fabrizio J, Petrus MN, Waldmann TA, Yang Y.
      More than 70% of Epstein-Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.
    Keywords:  Hodgkin lymphoma; NF-kB; signaling transduction; ubiquitination
    DOI:  https://doi.org/10.1073/pnas.2014470117
  43. Autophagy. 2020 Nov 05.
    Nakamura S, Akayama S, Yoshimori T.
      Lysosomes are digestive organelles in cells containing many hydrolases, and also serve as a signaling hub to integrate intracellular and extracellular inputs; therefore, the integrity of lysosomes is critical for cellular homeostasis. Many agents and conditions can damage lysosomal membranes, which lead to leakage of lysosomal acidic contents into the cytosol thus becoming harmful for cells. Accordingly, cells have developed several defense systems to cope with damaged lysosomes, but underlying mechanisms of each system and their cross-talks are unclear. In our recent study, we found that a master transcription factor regulating autophagy and lysosomal biogenesis, TFEB (transcription factor EB) is activated during lysosomal damage, and this activation depends on an autophagy-independent function of lipidated LC3, which localizes on lysosomes. We further showed that this regulatory mechanism is essential to prevent the progression of the crystal nephropathy that accompanies lysosomal damage.
    Keywords:  Autophagy; LC3; TFEB; TRPML1; lysosome
    DOI:  https://doi.org/10.1080/15548627.2020.1846292
  44. J Mol Med (Berl). 2020 Nov 07.
    Li N, Luo X, Yu Q, Yang P, Chen Z, Wang X, Jiang J, Xu J, Gong Q, Eizirik DL, Zhou Z, Zhao J, Xiong F, Zhang S, Wang CY.
      SUMOylation has long been recognized to regulate multiple biological processes in pancreatic beta cells, but its impact on proinsulin disulfide maturation and endoplasmic reticulum (ER) stress remains elusive. Herein, we conducted comparative proteomic analyses of SUMOylated proteins in primary mouse/human islets following proinflammatory cytokine stimulation. Cytokine challenge rendered beta cells to undergo a SUMOylation turnover manifested by the changes of SUMOylation substrates and SUMOylation levels for multiple substrates. Our data support that SUMOylation may play a crucial role to regulate proinsulin misfolding and ER stress at least by targeting Protein Disulfide Isomerase a3 (Pdia3). SUMOylation regulates Pdia3 enzymatic activity, subcellular localization, and protein binding ability. Furthermore, SUMOylation of Pdia3 exacerbated proinsulin misfolding and ER stress, and repressed Stat3 activation. In contrast, disruption of Pdia3 SUMOylation markedly rescued the outcomes. Collectively, our study expands the understanding how SUMOylation regulates ER stress in beta cells, which shed light on developing potential strategies against beta cell dysfunction.
    Keywords:  Beta cell; ER stress; Pdia3; Proinsulin misfolding; SUMOylation
    DOI:  https://doi.org/10.1007/s00109-020-02006-6
  45. SLAS Discov. 2020 Nov 03. 2472555220965528
    Ishida T, Ciulli A.
      Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
    Keywords:  E3 ubiquitin ligase; PROTACs; binding ligands; molecular glues; targeted protein degradation
    DOI:  https://doi.org/10.1177/2472555220965528
  46. Curr Biol. 2020 Oct 23. pii: S0960-9822(20)31505-0. [Epub ahead of print]
    Itani OA, Zhong X, Tang X, Scott BA, Yan JY, Flibotte S, Lim Y, Hsieh AC, Bruce JE, Van Gilst M, Crowder CM.
      The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.
    Keywords:  aminoacyl tRNA synthetase; hypoxic cell death; protein synthesis; proteomics; ribosomal; ribosomal RNA helicase; tRNA ligase
    DOI:  https://doi.org/10.1016/j.cub.2020.10.001
  47. Nat Commun. 2020 11 02. 11(1): 5510
    Sun J, Zhang M, Qi X, Doyle C, Zheng H.
      In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
    DOI:  https://doi.org/10.1038/s41467-020-19343-2
  48. Oncogenesis. 2020 Oct 31. 9(10): 98
    Shi L, Du D, Peng Y, Liu J, Long J.
      Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
    DOI:  https://doi.org/10.1038/s41389-020-00276-w