bims-proteo Biomed News
on Proteostasis
Issue of 2020‒06‒14
forty-six papers selected by
Eric Chevet
INSERM


  1. Cell Mol Neurobiol. 2020 Jun 11.
    Gorantla NV, Chinnathambi S.
      Tau is a microtubule-associated protein with an intrinsically unstructured conformation. Tau is subjected to several pathological post-translational modifications (PTMs), leading to its loss of interaction with microtubules and accumulation as neurofibrillary tangles (NFTs) in neurons. Tau aggregates impede functions of endoplasmic reticulum and mitochondria leading to the generation of oxidative stress and in turn amplifying the Tau aggregation. Tau is channelled to chaperones for folding into their native form, which otherwise causes its degradation and clearance. Cellular response triggers the activation of ubiquitin-proteasome system or autophagy to facilitate Tau degradation, based on the PTMs or mutations associated with Tau. Further, autophagy can be selective where Hsc70 interacts with Tau in monomeric, oligomeric and aggregated form and drives its clearance by chaperone-mediated autophagy pathway (CMA). Lysosome-associated membrane proteins-2A (LAMP-2A) is the key player of CMA that recognises Hsc70-Tau complex and triggers the downstream cascade. Thus, it becomes challenging for mutant Tau to be cleared by CMA as it loses its affinity for Hsc70 and LAMP-2A. In such a scenario, Tau might be degraded by macroautophagy otherwise sequestered by aggresomes. Henceforth, the degradation of Tau and its blockage that is associated with various PTMs of Tau would explain the dynamics of Tau degradation or accumulation in AD. Further, unveiling the role of accessory proteins involved in these degradation pathways would help in understanding their loss of function and preventing Tau clearance.
    Keywords:  Alzheimer’s disease; Chaperone-mediated autophagy; Lysosome-associated membrane proteins-2A; Macroautophagy; Neurofibrillary tangles; Tau; Tau degradation; Ubiquitin–proteasome system
    DOI:  https://doi.org/10.1007/s10571-020-00897-0
  2. Mol Cell. 2020 Jun 03. pii: S1097-2765(20)30318-X. [Epub ahead of print]
    Keiten-Schmitz J, Wagner K, Piller T, Kaulich M, Alberti S, Müller S.
      Exposure of cells to heat or oxidative stress causes misfolding of proteins. To avoid toxic protein aggregation, cells have evolved nuclear and cytosolic protein quality control (PQC) systems. In response to proteotoxic stress, cells also limit protein synthesis by triggering transient storage of mRNAs and RNA-binding proteins (RBPs) in cytosolic stress granules (SGs). We demonstrate that the SUMO-targeted ubiquitin ligase (StUbL) pathway, which is part of the nuclear proteostasis network, regulates SG dynamics. We provide evidence that inactivation of SUMO deconjugases under proteotoxic stress initiates SUMO-primed, RNF4-dependent ubiquitylation of RBPs that typically condense into SGs. Impairment of SUMO-primed ubiquitylation drastically delays SG resolution upon stress release. Importantly, the StUbL system regulates compartmentalization of an amyotrophic lateral sclerosis (ALS)-associated FUS mutant in SGs. We propose that the StUbL system functions as surveillance pathway for aggregation-prone RBPs in the nucleus, thereby linking the nuclear and cytosolic axis of proteotoxic stress response.
    Keywords:  ALS; PML; RNF4; SENP; SUMO; StUBL; protein quality control; proteotoxic stress; stress granules; ubiquitin
    DOI:  https://doi.org/10.1016/j.molcel.2020.05.017
  3. Antioxid Redox Signal. 2020 Jun 11.
    Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I.
      Selenoproteins incorporate the 21st amino acid selenocysteine into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), controlling the redox and ionic environment to maintain proteostasis. Noteworthy, selenoprotein T (SELENOT) is the only ER-resident selenoprotein whose gene disruption induces embryonic lethality. As expected for essential genes, its structure is remarkably conserved across eukaryotes. Its thioredoxin-like domain supports selenosulfide/disulfide reactions, an oxidoreductase activity which is essential to maintain ER redox homeostasis. Reduction of SELENOT expression in transgenic cell and animal models leads to an accumulation of reactive oxygen and nitrogen species, depletion of Ca2+ stores, and activation of the unfolded protein response (UPR). Expectedly, hormone secretion is impaired in endocrine and neuroendocrine cells due to ER stress. When ER stress could not be alleviated, cell viability is compromised. Mechanistically, SELENOT is anchored to the ER membrane and is able to bind the STT3A-type oligosaccharyltransferase complex in order to regulate N-glycan occupancy of specific substrates including glycohormones and GPI-anchored proteins which have key roles in cell adhesion and communication. Given the importance of limiting the ER stress that occurs in different pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, further work should be performed to better understand the role of SELENOT, and to design small mimetics such as selenopeptides to improve ER proteostasis and to prevent ER stress. In this review, we present the current state-of-art on the role of SELENOT in ER homeostasis, based on our observations that SELENOT is essential to alleviate ER stress.
    DOI:  https://doi.org/10.1089/ars.2019.7931
  4. Elife. 2020 Jun 11. pii: e53159. [Epub ahead of print]9
    Gupta A, Stocker H.
      The transcription factor FoxO has been shown to block proliferation and progression in mTORC1-driven tumorigenesis but the picture of the relevant FoxO target genes remains incomplete. Here, we employed RNA-seq profiling on single clones isolated using laser capture microdissection from Drosophila larval eye imaginal discs to identify FoxO targets that restrict the proliferation of Tsc1-deficient cells under nutrient restriction (NR). Transcriptomics analysis revealed downregulation of endoplasmic reticulum-associated protein degradation pathway components upon foxo knockdown. Induction of ER stress pharmacologically or by suppression of other ER stress response pathway components led to an enhanced overgrowth of Tsc1 knockdown tissue. Increase of ER stress in Tsc1 loss-of-function cells upon foxo knockdown was also confirmed by elevated expression levels of known ER stress markers. These results highlight the role of FoxO in limiting ER stress to regulate Tsc1 mutant overgrowth.
    Keywords:  D. melanogaster; ER stress; FoxO; Tsc1; cancer biology; genetics; genomics; laser capture microdissection
    DOI:  https://doi.org/10.7554/eLife.53159
  5. EMBO J. 2020 Jun 11. e2019103649
    Nthiga TM, Kumar Shrestha B, Sjøttem E, Bruun JA, Bowitz Larsen K, Bhujabal Z, Lamark T, Johansen T.
      The endoplasmic reticulum (ER) plays important roles in protein synthesis and folding, and calcium storage. The volume of the ER and expression of its resident proteins are increased in response to nutrient stress. ER-phagy, a selective form of autophagy, is involved in the degradation of the excess components of the ER to restore homeostasis. Six ER-resident proteins have been identified as ER-phagy receptors so far. In this study, we have identified CALCOCO1 as a novel ER-phagy receptor for the degradation of the tubular ER in response to proteotoxic and nutrient stress. CALCOCO1 is a homomeric protein that binds directly to ATG8 proteins via LIR- and UDS-interacting region (UIR) motifs acting co-dependently. CALCOCO1-mediated ER-phagy requires interaction with VAMP-associated proteins VAPA and VAPB on the ER membranes via a conserved FFAT-like motif. Depletion of CALCOCO1 causes expansion of the ER and inefficient basal autophagy flux. Unlike the other ER-phagy receptors, CALCOCO1 is peripherally associated with the ER. Therefore, we define CALCOCO1 as a soluble ER-phagy receptor.
    Keywords:   FFAT ; VAPA ; Autophagy; CALCOCO1; ER-phagy
    DOI:  https://doi.org/10.15252/embj.2019103649
  6. Front Physiol. 2020 ;11 515
    Quiles JM, Gustafsson ÅB.
      Mitochondrial dysfunction is a hallmark of cardiac pathophysiology. Defects in mitochondrial performance disrupt contractile function, overwhelm myocytes with reactive oxygen species (ROS), and transform these cellular powerhouses into pro-death organelles. Thus, quality control (QC) pathways aimed at identifying and removing damaged mitochondrial proteins, components, or entire mitochondria are crucial processes in post-mitotic cells such as cardiac myocytes. Almost all of the mitochondrial proteins are encoded by the nuclear genome and the trafficking of these nuclear-encoded proteins necessitates significant cross-talk with the cytosolic protein QC machinery to ensure that only functional proteins are delivered to the mitochondria. Within the organelle, mitochondria contain their own protein QC system consisting of chaperones and proteases. This system represents another level of QC to promote mitochondrial protein folding and prevent aggregation. If this system is overwhelmed, a conserved transcriptional response known as the mitochondrial unfolded protein response is activated to increase the expression of proteins involved in restoring mitochondrial proteostasis. If the mitochondrion is beyond repair, the entire organelle must be removed before it becomes cytotoxic and causes cellular damage. Recent evidence has also uncovered mitochondria as participants in cytosolic protein QC where misfolded cytosolic proteins can be imported and degraded inside mitochondria. However, this process also places increased pressure on mitochondrial QC pathways to ensure that the imported proteins do not cause mitochondrial dysfunction. This review is focused on discussing the pathways involved in regulating mitochondrial QC and their relationship to cellular proteostasis and mitochondrial health in the heart.
    Keywords:  Parkin; UPR; UPS; import; mitochondria; mitophagy; proteasome; proteotoxicity
    DOI:  https://doi.org/10.3389/fphys.2020.00515
  7. bioRxiv. 2020 Mar 28. pii: 2020.03.26.010322. [Epub ahead of print]
    Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M.
      The emergence of the betacoronavirus, SARS-CoV-2 that causes COVID-19, represents a significant threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, that mediates cell entry and membrane fusion. SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in immune evasion and occluding immunogenic protein epitopes. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.
    DOI:  https://doi.org/10.1101/2020.03.26.010322
  8. Biomolecules. 2020 Jun 05. pii: E863. [Epub ahead of print]10(6):
    Bhat MA, Ahmad K, Khan MSA, Bhat MA, Almatroudi A, Rahman S, Jan AT.
      Neurodegenerative diseases (NDs) are characterized by the accumulation of misfolded proteins. The hallmarks of protein aggregation in NDs proceed with impairment in the mitochondrial function, besides causing an enhancement in endoplasmic reticulum (ER) stress, neuroinflammation and synaptic loss. As accumulation of misfolded proteins hampers normal neuronal functions, it triggers ER stress, which leads to the activation of downstream effectors formulating events along the signaling cascade-referred to as unfolded protein response (UPRER) -thereby controlling cellular gene expression. The absence of disease-modifying therapeutic targets in different NDs, and the exponential increase in the number of cases, makes it critical to explore new approaches to treating these devastating diseases. In one such approach, osmolytes (low molecular weight substances), such as taurine have been found to promote protein folding under stress conditions, thereby averting aggregation of the misfolded proteins. Maintaining the structural integrity of the protein, taurine-mediated resumption of protein folding prompts a shift in folding homeostasis more towards functionality than towards aggregation and degradation. Together, taurine enacts protection in NDs by causing misfolded proteins to refold, so as to regain their stability and functionality. The present study provides recent and useful insights into understanding the progression of NDs, besides summarizing the genetics of NDs in correlation with mitochondrial dysfunction, ER stress, neuroinflammation and synaptic loss. It also highlights the structural and functional aspects of taurine in imparting protection against the aggregation/misfolding of proteins, thereby shifting the focus more towards the development of effective therapeutic modules that could avert the development of NDs.
    Keywords:  aggregation; neurodegenerative diseases; osmolytes; protein folding; therapeutics; unfolded protein response
    DOI:  https://doi.org/10.3390/biom10060863
  9. Proc Natl Acad Sci U S A. 2020 Jun 08. pii: 202003277. [Epub ahead of print]
    VerPlank JJS, Tyrkalska SD, Fleming A, Rubinsztein DC, Goldberg AL.
      Because raising cAMP enhances 26S proteasome activity and the degradation of cell proteins, including the selective breakdown of misfolded proteins, we investigated whether agents that raise cGMP may also regulate protein degradation. Treating various cell lines with inhibitors of phosphodiesterase 5 or stimulators of soluble guanylyl cyclase rapidly enhanced multiple proteasome activities and cellular levels of ubiquitinated proteins by activating protein kinase G (PKG). PKG stimulated purified 26S proteasomes by phosphorylating a different 26S component than is modified by protein kinase A. In cells and cell extracts, raising cGMP also enhanced within minutes ubiquitin conjugation to cell proteins. Raising cGMP, like raising cAMP, stimulated the degradation of short-lived cell proteins, but unlike cAMP, also markedly increased proteasomal degradation of long-lived proteins (the bulk of cell proteins) without affecting lysosomal proteolysis. We also tested if raising cGMP, like cAMP, can promote the degradation of mutant proteins that cause neurodegenerative diseases. Treating zebrafish models of tauopathies or Huntington's disease with a PDE5 inhibitor reduced the levels of the mutant huntingtin and tau proteins, cell death, and the resulting morphological abnormalities. Thus, PKG rapidly activates cytosolic proteasomes, protein ubiquitination, and overall protein degradation, and agents that raise cGMP may help combat the progression of neurodegenerative diseases.
    Keywords:  cGMP; proteasome phosphorylation; protein degradation; protein kinase G
    DOI:  https://doi.org/10.1073/pnas.2003277117
  10. J Cell Biol. 2020 Jul 06. pii: e201809020. [Epub ahead of print]219(7):
    Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C.
      The members of the Rab family of small GTPases are molecular switches that regulate distinct steps in different membrane traffic pathways. In addition to this canonical function, Rabs can play a role in other processes, such as cell adhesion and motility. Here, we reveal the role of the small GTPase Rab18 as a positive regulator of directional migration in chemotaxis, and the underlying mechanism. We show that knockdown of Rab18 reduces the size of focal adhesions (FAs) and influences their dynamics. Furthermore, we found that Rab18, by directly interacting with the endoplasmic reticulum (ER)-resident protein kinectin-1, controls the anterograde kinesin-1-dependent transport of the ER required for the maturation of nascent FAs and protrusion orientation toward a chemoattractant. Altogether, our data support a model in which Rab18 regulates kinectin-1 transport toward the cell surface to form ER-FA contacts, thus promoting FA growth and cell migration during chemotaxis.
    DOI:  https://doi.org/10.1083/jcb.201809020
  11. Cells. 2020 Jun 10. pii: E1442. [Epub ahead of print]9(6):
    Krammes L, Hart M, Rheinheimer S, Diener C, Menegatti J, Grässer F, Keller A, Meese E.
      Neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes BIP, IRE1α, and XBP1. Upon induction of ER stress in neuronal cells, miR-34a-5p overexpression impacts the resulting UPR via a significant reduction in IRE1α and XBP1s that in turn leads to decreased viability, increased cytotoxicity and caspase activity. The possibility to modify the UPR signaling pathway by a single miRNA that targets central genes of the IRE1α branch offers new perspectives for future therapeutic approaches against neurodegeneration.
    Keywords:  BIP; IRE1α; XBP1; endoplasmic reticulum; miR-34a-5p; neurodegeneration; unfolded protein response
    DOI:  https://doi.org/10.3390/cells9061442
  12. J Diabetes Complications. 2020 May 08. pii: S1056-8727(20)30374-3. [Epub ahead of print] 107618
    Stone SI, Abreu D, McGill JB, Urano F.
      The endoplasmic reticulum (ER) lies at the crossroads of protein folding, calcium storage, lipid metabolism, and the regulation of autophagy and apoptosis. Accordingly, dysregulation of ER homeostasis leads to β-cell dysfunction in type 1 and type 2 diabetes that ultimately culminates in cell death. The ER is therefore an emerging target for understanding the mechanisms of diabetes mellitus that captures the complex etiologies of this multifactorial class of metabolic disorders. Our strategy for developing ER-targeted diagnostics and therapeutics is to focus on monogenic forms of diabetes related to ER dysregulation in an effort to understand the exact contribution of ER stress to β-cell death. In this manner, we can develop personalized genetic medicine for ERstress-related diabetic disorders, such as Wolfram syndrome. In this article, we describe the phenotypes and molecular pathogenesis of ERstress-related monogenic forms of diabetes.
    Keywords:  ER stress; Endoplasmic reticulum; Genetic medicine; Genetic testing; Personalized medicine; Wolfram syndrome
    DOI:  https://doi.org/10.1016/j.jdiacomp.2020.107618
  13. Autophagy. 2020 Jun 07. 1-6
    Ho CJ, Samarasekera G, Rothe K, Xu J, Yang KC, Leung E, Chan M, Jiang X, Gorski SM.
      Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are part of these pathways are emerging. The fourth Vancouver Autophagy Symposium showcased research that expands our understanding of the protein interaction networks and molecular mechanisms underlying autophagy and other cellular stress responses in the context of distinct stressors. In the keynote presentation, Dr. Wade Harper described his team's recent discovery of a novel reticulophagy receptor for selective autophagic degradation of the endoplasmic reticulum, and discussed molecular mechanisms involved in ribophagy and non-autophagic ribosomal turnover. In other presentations, both omic and targeted approaches were used to reveal molecular players of other cellular stress responses including amyloid body and stress granule formation, anastasis, and extracellular vesicle biogenesis. Additional topics included the roles of autophagy in disease pathogenesis, autophagy regulatory mechanisms, and crosstalk between autophagy and cellular metabolism in anti-tumor immunity. The relationship between autophagy and other cell stress responses remains a relatively unexplored area in the field, with future investigations required to understand how the various processes are coordinated and connected in cells and tissues.ABBREVIATIONS: A-bodies: amyloid bodies; ACM: amyloid-converting motif; AMFR/gp78: autocrine motility factor receptor; ATG: autophagy-related; ATG4B: autophagy related 4B cysteine peptidase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CAR T: chimeric antigen receptor T; CASP3: caspase 3; CCPG1: cell cycle progression 1; CAR: chimeric antigen receptor; CML: chronic myeloid leukemia; CCOCs: clear cell ovarian cancers; CVB3: coxsackievirus B3; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9; DDXs: DEAD-box helicases; EIF2S1/EIF-2alpha: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; EV: extracellular vesicle; FAO: fatty acid oxidation; GABARAP: GABA type A receptor-associated protein; ILK: integrin linked kinase; ISR: integrated stress response; MTOR: mechanistic target of rapamycin kinase; MPECs: memory precursory effector T cells; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; PI4KB/PI4KIIIβ: phosphatidylinositol 4-kinase beta; PLEKHM1: pleckstrin homology and RUN domain containing M1; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; rIGSRNAs: ribosomal intergenic noncoding RNAs; RPL29: ribosomal protein L29; RPS3: ribosomal protein S3; S. cerevisiae: Saccharomyces cerevisiae; sEV: small extracellular vesicles; S. pombe: Schizosaccharomyces pombe; SQSTM1: sequestosome 1; SF3B1: splicing factor 3b subunit 1; SILAC-MS: stable isotope labeling with amino acids in cell culture-mass spectrometry; SNAP29: synaptosome associated protein 29; TEX264: testis expressed 264, ER-phagy receptor; TNBC: triple-negative breast cancer; ULK1: unc-51 like autophagy activating kinase 1; VAS: Vancouver Autophagy Symposium.
    Keywords:  Cellular stress responses; Vancouver autophagy symposium; macroautophagy; proteomics; selective autophagy
    DOI:  https://doi.org/10.1080/15548627.2020.1775394
  14. Autophagy. 2020 Jun 09. 1-19
    Ponsford AH, Ryan TA, Raimondi A, Cocucci E, Wycislo SA, Fröhlich F, Swan LE, Stagi M.
      Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines.ABBREVIATIONS: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4',6-diamidino -2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco's modified Eagle's medium;‎ E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.
    Keywords:  Chloroquine; MTOR protein; V-type ATPase; fluorescence microscopy; lysosomes; pH
    DOI:  https://doi.org/10.1080/15548627.2020.1771858
  15. J Cell Sci. 2020 Jun 08. pii: jcs.246306. [Epub ahead of print]
    Antón Z, Betin VMS, Simonetti B, Traer CJ, Attar N, Cullen PJ, Lane JD.
      The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a sub-group of SNXs in selective and non-selective forms of (macro)autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein, SNX4, is needed for efficient LC3 lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and heterodimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveal that SNX4:SNX7 is the autophagy-specific SNX-BAR heterodimer, required for efficient recruitment/retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially co-localises with juxtanuclear ATG9A-positive membranes, with our data linking the SNX4 autophagy defect to the mis-trafficking and/or retention of ATG9A in the Golgi region. Together, our findings show that the SNX4:SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.
    Keywords:  ATG9A; Autophagy; Endosomes; SNX30; SNX4; SNX7; Sorting nexin
    DOI:  https://doi.org/10.1242/jcs.246306
  16. Cells. 2020 Jun 04. pii: E1403. [Epub ahead of print]9(6):
    Frühbeck G, Balaguer I, Méndez-Giménez L, Valentí V, Becerril S, Catalán V, Gómez-Ambrosi J, Silva C, Salvador J, Calamita G, Malagón MM, Rodríguez A.
      Aquaporin-11 (AQP11) is expressed in human adipocytes, but its functional role remains unknown. Since AQP11 is an endoplasmic reticulum (ER)-resident protein that transports water, glycerol, and hydrogen peroxide (H2O2), we hypothesized that this superaquaporin is involved in ER stress induced by lipotoxicity and inflammation in human obesity. AQP11 expression was assessed in 67 paired visceral and subcutaneous adipose tissue samples obtained from patients with morbid obesity and normal-weight individuals. We found that obesity and obesity-associated type 2 diabetes increased (p < 0.05) AQP11 mRNA and protein in visceral adipose tissue, but not subcutaneous fat. Accordingly, AQP11 mRNA was upregulated (p < 0.05) during adipocyte differentiation and lipolysis, two biological processes altered in the obese state. Subcellular fractionation and confocal microscopy studies confirmed its presence in the ER plasma membrane of visceral adipocytes. Proinflammatory factors TNF-α, and particularly TGF-β1, downregulated (p < 0.05) AQP11 mRNA and protein expression and reinforced its subcellular distribution surrounding lipid droplets. Importantly, the AQP11 gene knockdown increased (p < 0.05) basal and TGF-β1-induced expression of the ER markers ATF4 and CHOP. Together, the downregulation of AQP11 aggravates TGF-β1-induced ER stress in visceral adipocytes. Owing to its "peroxiporin" properties, AQP11 overexpression in visceral fat might constitute a compensatory mechanism to alleviate ER stress in obesity.
    Keywords:  aquaporins; endoplasmic reticulum stress; obesity
    DOI:  https://doi.org/10.3390/cells9061403
  17. Genes Cells. 2020 Jun 13.
    Nuriliani A, Nakahata Y, Ahmed R, Khaidizar FD, Matsui T, Bessho Y.
      A main feature of aged organisms is the accumulation of senescent cells. Accumulated senescent cells, especially stress-induced premature senescent cells, in aged organisms lead to the decline of the regenerative potential and function of tissues. We recently reported that the overexpression of NAMPT, which is the rate-limiting enzyme in mammalian NAD+ salvage pathway, delays replicative senescence in vitro. However, whether Nampt-overexpressing cells are tolerant of stress-induced premature senescence remains unknown. Here, we show that primary mouse embryonic fibroblasts derived from Nampt-overexpressing transgenic mice (Nampt Tg-MEF cells) possess resistance against stress-induced premature senescence in vitro. We found that higher oxidative or endoplasmic reticulum (ER) stress is required to induce premature senescence in Nampt Tg-MEF cells compared to wild type cells. Moreover, we found that Nampt Tg-MEF cells show acute expression of unfolded protein response (UPR) related genes, which in turn would have helped to restore proteostasis and avoid cellular senescence. Our results demonstrate that NAMPT/NAD+ axis functions to protect cells not only from replicative senescence, but also from stress-induced premature senescence in vitro. We anticipate that in vivo activation of NAMPT activity or increment of NAD+ would protect tissues from the accumulation of premature senescent cells, thereby maintaining healthy aging.
    Keywords:  ; NAMPT; ER stress; NAD+; oxidative stress; premature senescence
    DOI:  https://doi.org/10.1111/gtc.12794
  18. Cell Signal. 2020 Jun 03. pii: S0898-6568(20)30163-7. [Epub ahead of print] 109686
    Li S, Wang J, Hu G, Aman S, Li B, Li Y, Xia K, Yang Y, Ahmad B, Wang M, Wu H.
      In cancers, apoptosis evasion through dysregulation of pro-apoptotic and anti-apoptotic intracellular signals is a recurring event. Accordingly, selective inhibition of specific proteins represents an exciting therapeutic opportunity. Myeloid cell leukemia 1 (MCL1) is an anti-apoptotic protein of the BCL-2 family, which is overexpressed in many cancers. Here, we demonstrate that MCL1 can be modified by the small ubiquitin-like modifier (SUMO) at K234 and K238 sites. The SUMOylation of MCL1 can improve its stability by inhibiting the MCL1 ubiquitin-proteasome pathway mediated by the Tripartite motif-containing 11 (TRIM11, a novel MCL1 ubiquitin E3 ligase that we identify in this study). Moreover, SUMOylation of MCL1 increases the proliferation of cancer cells by inhibiting apoptosis. These results suggest that the SUMOylation of MCL1 may play a significant role in the regulation of its function.
    Keywords:  Apoptosis; MCL1; Proliferation; SUMOylation; Ubiquitination
    DOI:  https://doi.org/10.1016/j.cellsig.2020.109686
  19. Cell Death Dis. 2020 Jun 10. 11(6): 445
    Liu H, Xie S, Fang F, Kalvakolanu DV, Xiao W.
      SHQ1 was reported to control the biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). It was independently isolated as a growth suppressor, GRIM1, in a genetic screen. Recent studies have indicated that SHQ1 inhibits prostate cancer growth and metastasis. SHQ1 facilitates MYC RNA splicing to promote T-acute lymphoblastic leukemia (T-ALL) development. Thus, the mechanisms of SHQ1 in cancers remain largely unknown. We report here that SHQ1 promotes tumor apoptosis and chemo-sensitivity in hepatocellular carcinoma (HCC) cells. In HCC tissues from patients, expression of SHQ1 was significantly decreased in the tumor compared to adjacent tissues. Experiments with HCC xenograft models revealed that restoring SHQ1 levels enhanced the anti-tumor activity of the endoplasmic reticulum (ER) stress inducer tunicamycin (TM) and common chemotherapy drug paclitaxel (PTX). Mechanistically, SHQ1 is an ER-stress response gene which is regulated by p50ATF6 and XBP1s through an ER stress response like element located on the SHQ1 promoter. SHQ1 interacts with the ER chaperone GRP78 to release ER sensors PERK/IRE1α/ATF6 from GRP78/ER-sensor complexes, leading to hyper-activation of unfolded protein response (UPR). In the persistent ER stress conditions of a HepG2 xenograft tumor model, SHQ1-mediated hyper-activation of ER-sensor signaling induces apoptosis. Our study thus demonstrates a SHQ1-mediated ER-stress response feedback loop that promotes tumor sensitivity to chemotherapeutics.
    DOI:  https://doi.org/10.1038/s41419-020-2656-0
  20. J Vis Exp. 2020 May 21.
    Bar-Ziv R, Frakes AE, Higuchi-Sanabria R, Bolas T, Frankino PA, Gildea HK, Metcalf MG, Dillin A.
      Organisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPRER), the unfolded protein response of the mitochondria (UPRMT), the heat shock response (HSR), and the oxidative stress response (OxSR). The protocols presented here describe methods to detect and characterize the activation of these pathways and their physiological consequences in the nematode, C. elegans. First, the use of pathway-specific fluorescent transcriptional reporters is described for rapid cellular characterization, drug screening, or large-scale genetic screening (e.g., RNAi or mutant libraries). In addition, complementary, robust physiological assays are described, which can be used to directly assess sensitivity of animals to specific stressors, serving as functional validation of the transcriptional reporters. Together, these methods allow for rapid characterization of the cellular and physiological effects of internal and external proteotoxic perturbations.
    DOI:  https://doi.org/10.3791/61001
  21. J Neurogenet. 2020 Jun 12. 1-11
    Prahlad V.
      Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
    Keywords:  C. elegans; Homeostasis; neuronal; non-autonomous; proteostasis
    DOI:  https://doi.org/10.1080/01677063.2020.1771333
  22. Autophagy. 2020 Jun 08.
    Gatica D, Wen X, Cheong H, Klionsky DJ.
      Macroautophagy/autophagy is a key catabolic process in which different cellular components are sequestered inside double-membrane vesicles called autophagosomes for subsequent degradation. In yeast, autophagosome formation occurs at the phagophore assembly site (PAS), a specific perivacuolar location that works as an organizing center for the recruitment of different autophagy-related (Atg) proteins. How the PAS is localized to the vacuolar periphery is not well understood. Here we show that the vacuolar membrane protein Vac8 is required for correct vacuolar localization of the PAS. We provide evidence that Vac8 anchors the PAS to the vacuolar membrane by binding Atg13 and recruiting the Atg1 initiation complex. VAC8 deletion or mislocalization of the protein reduce autophagy activity, highlighting the importance of both the PAS and the correct vacuolar localization of the Atg1 initiation complex for efficient and robust autophagy.
    Keywords:  Atg13; PAS; autophagosomes; lysosome; vacuole
    DOI:  https://doi.org/10.1080/15548627.2020.1776474
  23. Environ Toxicol. 2020 Jun 07.
    Liu C, Zhang A.
      Chronic exposure to arsenic remains a worldwide environmental health issue, affecting hundreds of millions of people. Although, arsenic-induced oxidative stress and apoptosis have been determined, the underlying apoptosis mechanism has not been fully elucidated yet. Oxidative stress integrated-ER stress plays an important role in Life-and-Death decision of cells. The current study was to investigate whether NaAsO2 utilizes oxidative stress integrated-ER stress signaling to exert pro-apoptotic activity in L-02 cells. Results showed that death receptor 5 (DR5) was a mediator of NaAsO2 -induced apoptosis by enhancing construction of the death-inducing signaling complex (DISC). NaAsO2 -sensitized DR5 elevation required maintainable transcription and its transcription factor C/EBP homologous protein (CHOP). Further results showed that NaAsO2 increased expression in biomarker of endoplasmic reticulum (ER) stress and activated the protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway. PERK inhibitor and ATF4 siRNA significantly attenuated NaAsO2 -induced CHOP and DR5 expressions. In addition, the antioxidant N-acetyl-l-cysteine (NAC) treatment led to amelioration of NaAsO2 -induced production of reactive oxygen species (ROS) and some ER stress- and apoptosis- related protein levels and cell viability. Taken together, the results indicate that ROS-mediated PERK-eIF2α-ATF4 pathway activated by NaAsO2 is the critical upstream event for subsequent apoptosis induction via regulating CHOP-DR5 signaling in L-02 cells when chronic exposure to arsenic, and support that antioxidants might be potential therapeutic agents for preventing or delaying the onset and progress of arsenic-induced hepatotoxicity.
    Keywords:  CHOP-DR5 signaling; NaAsO2; PERK-eIF2α-ATF4 pathway; apoptosis
    DOI:  https://doi.org/10.1002/tox.22946
  24. Mol Cell. 2020 Jun 08. pii: S1097-2765(20)30356-7. [Epub ahead of print]
    Dirac-Svejstrup AB, Walker J, Faull P, Encheva V, Akimov V, Puglia M, Perkins D, Kümper S, Hunjan SS, Blagoev B, Snijders AP, Powell DJ, Svejstrup JQ.
      The Ddi1/DDI2 proteins are ubiquitin shuttling factors, implicated in a variety of cellular functions. In addition to ubiquitin-binding and ubiquitin-like domains, they contain a conserved region with similarity to retroviral proteases, but whether and how DDI2 functions as a protease has remained unknown. Here, we show that DDI2 knockout cells are sensitive to proteasome inhibition and accumulate high-molecular weight, ubiquitylated proteins that are poorly degraded by the proteasome. These proteins are targets for the protease activity of purified DDI2. No evidence for DDI2 acting as a de-ubiquitylating enzyme was uncovered, which could suggest that it cleaves the ubiquitylated protein itself. In support of this idea, cleavage of transcription factor NRF1 is known to require DDI2 activity in vivo. We show that DDI2 is indeed capable of cleaving NRF1 in vitro but only when NRF1 protein is highly poly-ubiquitylated. Together, these data suggest that DDI2 is a ubiquitin-directed endoprotease.
    Keywords:  Bortezomib; DDI2; Ddi1; NFE2L1; NRF1; proteasome; proteasome inhibition; ubiquitin; ubiquitin protease
    DOI:  https://doi.org/10.1016/j.molcel.2020.05.035
  25. Oncogene. 2020 Jun 10.
    Crawford LJ, Campbell DC, Morgan JJ, Lawson MA, Down JM, Chauhan D, McAvera RM, Morris TC, Hamilton C, Krishnan A, Rajalingam K, Chantry AD, Irvine AE.
      Proteasome inhibitors have provided a significant advance in the treatment of multiple myeloma (MM). Consequently, there is increasing interest in developing strategies to target E3 ligases, de-ubiquitinases, and/or ubiquitin receptors within the ubiquitin proteasome pathway, with an aim to achieve more specificity and reduced side-effects. Previous studies have shown a role for the E3 ligase HUWE1 in modulating c-MYC, an oncogene frequently dysregulated in MM. Here we investigated HUWE1 in MM. We identified elevated expression of HUWE1 in MM compared with normal cells. Small molecule-mediated inhibition of HUWE1 resulted in growth arrest of MM cell lines without significantly effecting the growth of normal bone marrow cells, suggesting a favorable therapeutic index. Studies using a HUWE1 knockdown model showed similar growth inhibition. HUWE1 expression positively correlated with MYC expression in MM bone marrow cells and correspondingly, genetic knockdown and biochemical inhibition of HUWE1 reduced MYC expression in MM cell lines. Proteomic identification of HUWE1 substrates revealed a strong association of HUWE1 with metabolic processes in MM cells. Intracellular glutamine levels are decreased in the absence of HUWE1 and may contribute to MYC degradation. Finally, HUWE1 depletion in combination with lenalidomide resulted in synergistic anti-MM activity in both in vitro and in vivo models. Taken together, our data demonstrate an important role of HUWE1 in MM cell growth and provides preclinical rationale for therapeutic strategies targeting HUWE1 in MM.
    DOI:  https://doi.org/10.1038/s41388-020-1345-x
  26. Proc Natl Acad Sci U S A. 2020 Jun 08. pii: 202007085. [Epub ahead of print]
    Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J.
      Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a K d of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a K d of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
    Keywords:  GID; GID4; degradation; degron; ubiquitin
    DOI:  https://doi.org/10.1073/pnas.2007085117
  27. PLoS Biol. 2020 Jun 10. 18(6): e3000687
    Batista A, Rodvold JJ, Xian S, Searles SC, Lew A, Iwawaki T, Almanza G, Waller TC, Lin J, Jepsen K, Carter H, Zanetti M.
      In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.
    DOI:  https://doi.org/10.1371/journal.pbio.3000687
  28. J Biol Chem. 2020 Jun 08. pii: jbc.RA120.012575. [Epub ahead of print]
    Hosomi A, Iida K, Cho T, Iida H, Kaneko M, Suzuki T.
      Soluble proteins destined for the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER). The importance of N-terminal signal peptides for ER translocation has been extensively examined over the past few decades. However, in the budding yeast Saccharomyces cerevisiae, a few proteins devoid of a signal peptide are still translocated into the ER and then N-glycosylated. Using signal peptide-truncated reporter proteins, we herein report detection of significant translocation of N-terminal signal peptide-truncated proteins in a yeast mutant strain (ste24∆) that lacks the endopeptidase Ste24 at the ER membrane. Furthermore, several ER/cytosolic proteins, including Sec61, Sec66, and Sec72, were identified as being involved in the translocation process. On the basis of screening for 20 soluble proteins that may be N-glycosylated in the ER in the ste24∆ strain, we identified the transcription factor Rme1 as a protein that is partially N-glycosylated despite the lack of a signal peptide. These results clearly indicate that some proteins lacking a signal peptide can be translocated into the ER and that Ste24 typically suppresses this process.
    Keywords:  Ste24; cell biology; endoplasmic reticulum (ER); glycosylation; protein translocation; signal peptide; yeast
    DOI:  https://doi.org/10.1074/jbc.RA120.012575
  29. Cell Rep. 2020 Jun 09. pii: S2211-1247(20)30725-7. [Epub ahead of print]31(10): 107745
    Zhu C, Rogers A, Asleh K, Won J, Gao D, Leung S, Li S, Vij KR, Zhu J, Held JM, You Z, Nielsen TO, Shao J.
      Spatiotemporal protein reorganization at DNA damage sites induced by genotoxic chemotherapies is crucial for DNA damage response (DDR), which influences treatment response by directing cancer cell fate. This process is orchestrated by valosin-containing protein (VCP), an AAA+ ATPase that extracts polyubiquinated chromatin proteins and facilitates their turnover. However, because of the essential and pleiotropic effects of VCP in global proteostasis, it remains challenging practically to understand and target its DDR-specific functions. We describe a DNA-damage-induced phosphorylation event (Ser784), which selectively enhances chromatin-associated protein degradation mediated by VCP and is required for DNA repair, signaling, and cell survival. These functional effects of Ser784 phosphorylation on DDR correlate with a decrease in VCP association with chromatin, cofactors NPL4/UFD1, and polyubiquitinated substrates. Clinically, high phospho-Ser784-VCP levels are significantly associated with poor outcome among chemotherapy-treated breast cancer patients. Thus, Ser784 phosphorylation is a DDR-specific enhancer of VCP function and a potential predictive biomarker for chemotherapy treatments.
    Keywords:  DNA damage response; K48-linked polyubiquitin; VCP; biomarker; cancer; chemotherapy; chromatin-associated degradation; nucleus; phosphorylation; proteostasis
    DOI:  https://doi.org/10.1016/j.celrep.2020.107745
  30. Sci Adv. 2020 May;6(22): eaba5412
    Wang Y, Wang X, Cui X, Zhuo Y, Li H, Ha C, Xin L, Ren Y, Zhang W, Sun X, Ge L, Liu X, He J, Zhang T, Zhang K, Yao Z, Yang X, Yang J.
      SND1 is highly expressed in various cancers. Here, we identify oncoprotein SND1 as a previously unidentified endoplasmic reticulum (ER) membrane-associated protein. The amino-terminal peptide of SND1 predominantly associates with SEC61A, which anchors on ER membrane. The SN domain of SND1 catches and guides the nascent synthesized heavy chain (HC) of MHC-I to ER-associated degradation (ERAD), hindering the normal assembly of MHC-I in the ER lumen. In mice model bearing tumors, especially in transgenic OT-I mice, deletion of SND1 promotes the presentation of MHC-I in both B16F10 and MC38 cells, and the infiltration of CD8+ T cells is notably increased in tumor tissue. It was further confirmed that SND1 impaired tumor antigen presentation to cytotoxic CD8+ T cells both in vivo and in vitro. These findings reveal SND1 as a novel ER-associated protein facilitating immune evasion of tumor cells through redirecting HC to ERAD pathway that consequently interrupts antigen presentation.
    DOI:  https://doi.org/10.1126/sciadv.aba5412
  31. J Cell Biol. 2020 Aug 03. pii: e202004120. [Epub ahead of print]219(8):
    Moon SL, Morisaki T, Stasevich TJ, Parker R.
      Stress granules are dynamic assemblies of proteins and nontranslating RNAs that form when translation is inhibited in response to diverse stresses. Defects in ubiquitin-proteasome system factors including valosin-containing protein (VCP) and the proteasome impact the kinetics of stress granule induction and dissolution as well as being implicated in neuropathogenesis. However, the impacts of dysregulated proteostasis on mRNA regulation and stress granules are not well understood. Using single mRNA imaging, we discovered ribosomes stall on some mRNAs during arsenite stress, and the release of transcripts from stalled ribosomes for their partitioning into stress granules requires the activities of VCP, components of the ribosome-associated quality control (RQC) complex, and the proteasome. This is an unexpected contribution of the RQC system in releasing mRNAs from translation under stress, thus identifying a new type of stress-activated RQC (saRQC) distinct from canonical RQC pathways in mRNA substrates, cellular context, and mRNA fate.
    DOI:  https://doi.org/10.1083/jcb.202004120
  32. Nat Commun. 2020 Jun 10. 11(1): 2926
    Verma K, Saxena K, Donaka R, Chaphalkar A, Rai MK, Shukla A, Zaidi Z, Dandage R, Shanmugam D, Chakraborty K.
      Metabolic changes alter the cellular milieu; can this also change intracellular protein folding? Since proteostasis can modulate mutational buffering, if change in metabolism has the ability to change protein folding, arguably, it should also alter mutational buffering. Here we find that altered cellular metabolic states in E. coli buffer distinct mutations on model proteins. Buffered-mutants have folding problems in vivo and are differently chaperoned in different metabolic states. Notably, this assistance is dependent upon the metabolites and not on the increase in canonical chaperone machineries. Being able to reconstitute the folding assistance afforded by metabolites in vitro, we propose that changes in metabolite concentrations have the potential to alter protein folding capacity. Collectively, we unravel that the metabolite pools are bona fide members of proteostasis and aid in mutational buffering. Given the plasticity in cellular metabolism, we posit that metabolic alterations may play an important role in cellular proteostasis.
    DOI:  https://doi.org/10.1038/s41467-020-16804-6
  33. Proc Natl Acad Sci U S A. 2020 Jun 08. pii: 201918596. [Epub ahead of print]
    Wu SF, Xia L, Shi XD, Dai YJ, Zhang WN, Zhao JM, Zhang W, Weng XQ, Lu J, Le HY, Tao SC, Zhu J, Chen Z, Wang YY, Chen S.
      Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all-trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5'-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I-binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 (TRIM25) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I-mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I-induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.
    Keywords:  ISGylation; RIG-I; TRIM25; acute promyelocytic leukemia (APL); myeloid differentiation
    DOI:  https://doi.org/10.1073/pnas.1918596117
  34. EMBO Mol Med. 2020 Jun 11. e11659
    Alsina D, Lytovchenko O, Schab A, Atanassov I, Schober FA, Jiang M, Koolmeister C, Wedell A, Taylor RW, Wredenberg A, Larsson NG.
      Pathogenic variants in FBXL4 cause a severe encephalopathic syndrome associated with mtDNA depletion and deficient oxidative phosphorylation. To gain further insight into the enigmatic pathophysiology caused by FBXL4 deficiency, we generated homozygous Fbxl4 knockout mice and found that they display a predominant perinatal lethality. Surprisingly, the few surviving animals are apparently normal until the age of 8-12 months when they gradually develop signs of mitochondrial dysfunction and weight loss. One-year-old Fbxl4 knockouts show a global reduction in a variety of mitochondrial proteins and mtDNA depletion, whereas lysosomal proteins are upregulated. Fibroblasts from patients with FBXL4 deficiency and human FBXL4 knockout cells also have reduced steady-state levels of mitochondrial proteins that can be attributed to increased mitochondrial turnover. Inhibition of lysosomal function in these cells reverses the mitochondrial phenotype, whereas proteasomal inhibition has no effect. Taken together, the results we present here show that FBXL4 prevents mitochondrial removal via autophagy and that loss of FBXL4 leads to decreased mitochondrial content and mitochondrial disease.
    Keywords:  FBXL4; autophagy; mitochondrial disease; mtDNA; oxidative phosphorylation
    DOI:  https://doi.org/10.15252/emmm.201911659
  35. Autophagy. 2020 Jun 09. 1-21
    Munzel L, Neumann P, Otto FB, Krick R, Metje-Sprink J, Kroppen B, Karedla N, Enderlein J, Meinecke M, Ficner R, Thumm M.
      Coupling of Atg8 to phosphatidylethanolamine is crucial for the expansion of the crescent-shaped phagophore during cargo engulfment. Atg21, a PtdIns3P-binding beta-propeller protein, scaffolds Atg8 and its E3-like complex Atg12-Atg5-Atg16 during lipidation. The crystal structure of Atg21, in complex with the Atg16 coiled-coil domain, showed its binding at the bottom side of the Atg21 beta-propeller. Our structure allowed detailed analyses of the complex formation of Atg21 with Atg16 and uncovered the orientation of the Atg16 coiled-coil domain with respect to the membrane. We further found that Atg21 was restricted to the phagophore edge, near the vacuole, known as the vacuole isolation membrane contact site (VICS). We identified a specialized vacuolar subdomain at the VICS, typical of organellar contact sites, where the membrane protein Vph1 was excluded, while Vac8 was concentrated. Furthermore, Vac8 was required for VICS formation. Our results support a specialized organellar contact involved in controlling phagophore elongation.
    Keywords:  Atg16; Atg21; Atg8 lipidation; VICS; organellar contact site; phagophore elongation
    DOI:  https://doi.org/10.1080/15548627.2020.1766332
  36. Front Endocrinol (Lausanne). 2020 ;11 319
    Martínez J, Marmisolle I, Tarallo D, Quijano C.
      Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
    Keywords:  ATP; bioenergetics; calcium; dynamics; endoplasmic reticulum; exocytosis; mitochondria; secretion
    DOI:  https://doi.org/10.3389/fendo.2020.00319
  37. J Biol Chem. 2020 Jun 11. pii: jbc.REV120.011833. [Epub ahead of print]
    Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M.
      Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, towards regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
    Keywords:  cancer; chaperone; heat shock protein 90 (Hsp90); phosphorylation; post-translational modification (PTM)
    DOI:  https://doi.org/10.1074/jbc.REV120.011833
  38. EMBO J. 2020 Jun 08. e102931
    Husain A, Xu J, Fujii H, Nakata M, Kobayashi M, Wang JY, Rehwinkel J, Honjo T, Begum NA.
      Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.
    Keywords:   AICDA ; dNTP ; DNA repair; SAMHD1; genomic instability
    DOI:  https://doi.org/10.15252/embj.2019102931
  39. Cancers (Basel). 2020 Jun 10. pii: E1518. [Epub ahead of print]12(6):
    Bufalieri F, Lospinoso Severini L, Caimano M, Infante P, Di Marcotullio L.
      The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
    Keywords:  DUBs; Hedgehog pathway; cancer; targeted therapy; ubiquitylation
    DOI:  https://doi.org/10.3390/cancers12061518
  40. Autophagy. 2020 Jun 10. 1-3
    Liu L, Zhang M, Ge L.
      Macroautophagy/autophagy was recently shown to regulate unconventional protein secretion through a process called secretory autophagy. How the secretory cargo selectively enters into the secretory autophagosome has been a central question. Our recent studies indicate that cargo translocation into the ER-Golgi intermediate compartment, a compartment contributing membranes to the forming autophagosome, acts as a mechanism for secretory cargo entry into the vesicle and may be an early step for secretory autophagy.
    Keywords:  Autophagy; ERGIC; HSP90; TMED10; membrane trafficking; protein translocation; unconventional protein secretion
    DOI:  https://doi.org/10.1080/15548627.2020.1768668
  41. Plants (Basel). 2020 Jun 08. pii: E723. [Epub ahead of print]9(6):
    Feng H, Wang S, Dong D, Zhou R, Wang H.
      Protein ubiquitination plays important roles in plants, including stress responses. The ubiquitin (Ub) E2 enzymes are required in the transfer of Ub to a substrate and are also important in determining the Ub-chain linkage specificity. However, for many of the 37 E2 genes in Arabidopsis thaliana, there is currently little or no understanding of their functions. In this study, we investigated three members of an E2 subfamily. The single, double, and triple mutants of UBC7, UBC13, and UBC14 did not show any phenotypic changes under normal conditions, but were more sensitive than the wild-type (WT) plants to multiple stress conditions, suggesting that the three genes are not critical for normal growth, but required in plant stress responses. The severity of the phenotypes increased from single to triple mutants, suggesting that the functions of the three genes are not completely redundant. The three E2s are closely related to the yeast Ubc7 and its homologs in animals and human, which are an important component of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The stress sensitivity phenotypes of the mutants and shared evolutionary root with the Ubc7 homologs in yeast and metazoans suggest that UBC7, UBC13, and UBC14 may function in the plant ERAD pathway.
    Keywords:  Arabidopsis; UBC7; oxidative stress; salt stress; stress response; ubiquitin-conjugating
    DOI:  https://doi.org/10.3390/plants9060723
  42. Nat Commun. 2020 Jun 10. 11(1): 2936
    Reich S, Nguyen CDL, Has C, Steltgens S, Soni H, Coman C, Freyberg M, Bichler A, Seifert N, Conrad D, Knobbe-Thomsen CB, Tews B, Toedt G, Ahrends R, Medenbach J.
      Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.
    DOI:  https://doi.org/10.1038/s41467-020-16747-y
  43. Int J Mol Sci. 2020 Jun 08. pii: E4088. [Epub ahead of print]21(11):
    Gu H, Jan Fada B.
      Ubiquitination is a prominent posttranslational modification, in which the ubiquitin moiety is covalently attached to a target protein to influence protein stability, interaction partner and biological function. All seven lysine residues of ubiquitin, along with the N-terminal methionine, can each serve as a substrate for further ubiquitination, which effectuates a diverse combination of mono- or poly-ubiquitinated proteins with linear or branched ubiquitin chains. The intricately composed ubiquitin codes are then recognized by a large variety of ubiquitin binding domain (UBD)-containing proteins to participate in the regulation of various pathways to modulate the cell behavior. Viruses, as obligate parasites, involve many aspects of the cell pathways to overcome host defenses and subjugate cellular machineries. In the virus-host interactions, both the virus and the host tap into the rich source of versatile ubiquitination code in order to compete, combat, and co-evolve. Here, we review the recent literature to discuss the role of ubiquitin system as the infection progresses in virus life cycle and the importance of ubiquitin specificity in the regulation of virus-host relation.
    Keywords:  ubiquitin code; virus infection; virus-host interaction
    DOI:  https://doi.org/10.3390/ijms21114088
  44. J Biol Chem. 2020 Jun 09. pii: jbc.REV120.011666. [Epub ahead of print]
    Nitika , Porter CM, Truman AW, Truttmann MC.
      Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "Chaperone Code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, as well as thoughts on what the future of research into the chaperone code may entail.
    Keywords:  70 kilodalton heat shock protein (Hsp70); acetylation; molecular chaperone; post-translational modification (PTM); protein AMPylation; protein methylation; protein phosphorylation
    DOI:  https://doi.org/10.1074/jbc.REV120.011666
  45. Glia. 2020 Jun 08.
    Zhou Y, Borchelt D, Bauson JC, Fazio S, Miles JR, Tavori H, Notterpek L.
      Abnormalities of the peripheral myelin protein 22 (PMP22) gene, including duplication, deletion and point mutations are a major culprit in Type 1 Charcot-Marie-Tooth (CMT) diseases. The complete absence of PMP22 alters cholesterol metabolism in Schwann cells, which likely contributes to myelination deficits. Here, we examined the subcellular trafficking of cholesterol in distinct models of PMP22-linked neuropathies. In Schwann cells from homozygous Trembler J (TrJ) mice carrying a Leu16Pro mutation, cholesterol was retained with TrJ-PMP22 in the Golgi, alongside a corresponding reduction in its plasma membrane level. PMP22 overexpression, which models CMT1A caused by gene duplication, triggered cholesterol sequestration to lysosomes, and reduced ATP-binding cassette transporter-dependent cholesterol efflux. Conversely, lysosomal targeting of cholesterol by U18666A treatment increased wild type (WT)-PMP22 levels in lysosomes. Mutagenesis of a cholesterol recognition motif, or CRAC domain, in human PMP22 lead to increased levels of PMP22 in the ER and Golgi compartments, along with higher cytosolic, and lower membrane-associated cholesterol. Importantly, cholesterol trafficking defects observed in PMP22-deficient Schwann cells were rescued by WT but not CRAC-mutant-PMP22. We also observed that myelination deficits in dorsal root ganglia explants from heterozygous PMP22-deficient mice were improved by cholesterol supplementation. Collectively, these findings indicate that PMP22 is critical in cholesterol metabolism, and this mechanism is likely a contributing factor in PMP22-linked hereditary neuropathies. Our results provide a basis for understanding how altered expression of PMP22 impacts cholesterol metabolism.
    Keywords:  Charcot-Marie-tooth disease Type 1A; Dejerine-Sottas syndrome; Schwann cell; cholesterol subcellular trafficking; fibroblast; peripheral myelin protein 22
    DOI:  https://doi.org/10.1002/glia.23840
  46. Cell Host Microbe. 2020 May 27. pii: S1931-3128(20)30251-1. [Epub ahead of print]
    Alix E, Godlee C, Cerny O, Blundell S, Tocci R, Matthews S, Liu M, Pruneda JN, Swatek KN, Komander D, Sleap T, Holden DW.
      The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. Here, through a genome-wide mutant screen of human antigen-presenting cells, we show that the NEDD4 family HECT E3 ubiquitin ligase WWP2 and a tumor-suppressing transmembrane protein of unknown biochemical function, TMEM127, are required for SteD-dependent ubiquitination of mMHCII. Although evidently not involved in normal regulation of mMHCII, TMEM127 was essential for SteD to suppress both mMHCII antigen presentation in mouse dendritic cells and MHCII-dependent CD4+ T cell activation. We found that TMEM127 contains a canonical PPxY motif, which was required for binding to WWP2. SteD bound to TMEM127 and enabled TMEM127 to interact with and induce ubiquitination of mature MHCII. Furthermore, SteD also underwent TMEM127- and WWP2-dependent ubiquitination, which both contributed to its degradation and augmented its activity on mMHCII.
    Keywords:  CRISPR screen; MHCII; Salmonella; SteD; TMEM127; WWP2; dendritic cells; lysosomal degradation; ubiquitination
    DOI:  https://doi.org/10.1016/j.chom.2020.04.024