bims-proarb Biomed News
on Proteostasis in aging and regenerative biology
Issue of 2021‒12‒19
twelve papers selected by
Rich Giadone
Harvard University


  1. Nat Commun. 2021 Dec 15. 12(1): 7310
      Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
    DOI:  https://doi.org/10.1038/s41467-021-27597-7
  2. Neural Regen Res. 2022 Jul;17(7): 1423-1430
      Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.
    Keywords:  amyotrophic lateral sclerosis; frontotemporal dementia; neurodegeneration; neurodegenerative diseases; protein imbalance; protein synthesis modulation; proteostasis; therapeutical compounds; transactive response DNA-binding protein of 43 kDa; translation; unfolded protein response
    DOI:  https://doi.org/10.4103/1673-5374.330593
  3. Plant J. 2021 Dec 11.
      Proteostasis of the endoplasmic reticulum (ER) is controlled by sophisticated signaling pathways that are collectively called the unfolded protein response (UPR) and are initiated by specialized ER membrane-associated sensors. The evidence that complete loss-of-function mutations of the most conserved of the UPR sensors, inositol-requiring enzyme 1 (IRE1), dysregulates tissue growth and development in metazoans and plants raises the fundamental question as to how IRE1 is connected to organismal growth. To address this question, we interrogated the Arabidopsis primary root, an established model for organ development, using the tractable Arabidopsis IRE1 mutant ire1a ire1b, which has marked root development defects in the absence of exogenous stress. We demonstrate that IRE1 is required to reach maximum rates of cell elongation and root growth. We also established that in the actively growing ire1a ire1b mutant root tips the Target of Rapamycin (TOR) kinase, a widely conserved pro-growth regulator, is hyperactive, and that, unlike cell proliferation, the rate of cell differentiation is enhanced in ire1a ire1b in a TOR-dependent manner. By functionally connecting two essential growth regulators, these results underpin a novel and critical role of IRE1 in organ development and indicate that, as cells exit an undifferentiated state, IRE1 is required to monitor TOR activity to balance cell expansion and maturation during organ biogenesis.
    Keywords:   Arabidopsis thaliana ; IRE1; TOR; development; differentiation; unfolded protein response
    DOI:  https://doi.org/10.1111/tpj.15629
  4. EMBO J. 2021 Dec 14. e105531
      Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
    Keywords:  actin cytoskeleton; cell adhesion; integrins; intellectual disability; protein disulfide isomerase
    DOI:  https://doi.org/10.15252/embj.2020105531
  5. Andrologia. 2021 Dec 13. e14350
      Activating transcription factor 6 (ATF6), also known as ACHM7, ATF6A, encodes a transcription factor that activates target genes for the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. It functions as nuclear transcription factor via a cis-acting ER stress response element (ERSE) that is presented in the promoters of genes encoding ER chaperones. Studies have shown that endoplasmic reticulum stress (ERS) can cause damage to spermatozoa and testes, leading to male sterility. And we find that the expression of ATF6 in spermatozoa of some infertile patients is significantly reduced. Then, we construct the Atf6 knockout mice model and interestingly find a decline in male fertility. The downstream gene testis-specific serine/threonine-protein kinase 4 (Tssk4) is screened based on transcriptome sequencing. We use Western blot and real-time PCR to confirm this result in both 293T cells and Atf6 knockout mice. TSSK4 is essential in male germ cell genesis and sperm maturation. Our results suggest that the expression of TSSK4 may be regulated by ATF6. The effect of Atf6 knockout on the reproductive development of male mice may be related to the low expression of TSSK4, which further verify that there may be some relationship between ERS and male reproduction.
    Keywords:  endoplasmic reticulum stress; male fertility; spermatogenesis; transcriptome sequencing
    DOI:  https://doi.org/10.1111/and.14350
  6. FEBS J. 2021 May 02.
      Autophagy is an essential intracellular process for cellular quality control. It enables cell homeostasis through the selective degradation of harmful protein aggregates and damaged organelles. Autophagy is essential for recycling nutrients, generating energy to maintain cell viability in most tissues and during adverse conditions such as hypoxia/ischaemia. The progressive understanding of the mechanisms modulating autophagy in the vasculature has recently led numerous studies to link intact autophagic responses with endothelial cell (EC) homeostasis and function. Preserved autophagic flux within the ECs has an essential role in maintaining their physiological characteristics, whereas defective autophagy can promote endothelial pro-inflammatory and atherogenic phenotype. However, we still lack a good knowledge of the complete molecular repertoire controlling various aspects of endothelial autophagy and how this is associated with vascular diseases. Here, we provide an overview of the current state of the art of autophagy in ECs. We review the discoveries that have so far defined autophagy as an essential mechanism in vascular biology and analyse how autophagy influences ECs behaviour in vascular disease. Finally, we emphasise opportunities for compounds to regulate autophagy in ECs and discuss the challenges of exploiting them to resolve vascular disease.
    Keywords:  autophagy; endothelial cells; inflammation; senescence; therapeutic modulation; vascular disease
    DOI:  https://doi.org/10.1111/febs.15873
  7. Nat Aging. 2021 Aug;1(8): 634-650
      Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.
    DOI:  https://doi.org/10.1038/s43587-021-00098-4
  8. Prog Retin Eye Res. 2021 Dec 09. pii: S1350-9462(21)00093-8. [Epub ahead of print] 101032
      Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
    Keywords:  Anti-inflammation; Clusterin; Cytoprotection; Extracellular chaperone; Eye; Proteostasis
    DOI:  https://doi.org/10.1016/j.preteyeres.2021.101032
  9. Alzheimers Dement. 2021 Dec 15.
      N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.
    Keywords:  MALDI imaging; N-linked glycosylation; bioenergetics; carbohydrate metabolism; neuronal function; synaptic transmission
    DOI:  https://doi.org/10.1002/alz.12523
  10. Science. 2021 Dec 17. 374(6574): 1426-1427
      [Figure: see text].
    DOI:  https://doi.org/10.1126/science.acz9822
  11. Curr Res Pharmacol Drug Discov. 2021 ;2 100033
      Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
    Keywords:  Activation/inhibition of autophagy; Autophagy-targeted therapy; Cancer; Cardiac or cardiovascular diseases; Neurodegenerative disorders
    DOI:  https://doi.org/10.1016/j.crphar.2021.100033
  12. Biochem Soc Trans. 2021 Dec 16. pii: BST20210844. [Epub ahead of print]
      Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
    Keywords:  RNA; ageing; protein biosynthesis; ribosome; translation; translational control
    DOI:  https://doi.org/10.1042/BST20210844