bims-proarb Biomed News
on Proteostasis in Aging and Regenerative Biology
Issue of 2021‒05‒23
twenty-five papers selected by
Rich Giadone
Harvard University

  1. Biol Open. 2020 Jan 01. pii: bio.053918. [Epub ahead of print]
      In response to injury, skeletal muscle stem cells (MuSCs) undergo myogenesis where they become activated, proliferate rapidly, differentiate and undergo fusion to form multinucleated myotubes. Dramatic changes in cell size, shape, metabolism and motility occur during myogenesis which cause cellular stress and alter proteostasis. The molecular chaperone heat shock protein 70 (HSP70) maintains proteostasis by regulating protein biosynthesis and folding, facilitating transport of polypeptides across intracellular membranes and preventing stress-induced protein unfolding/aggregation. Although HSP70 overexpression can exert beneficial effects in skeletal muscle diseases and enhance skeletal muscle repair after injury, its effect on myogenesis has not been investigated. Plasmid-mediated overexpression of HSP70 did not affect the rate of C2C12 proliferation or differentiation, but the median number of myonuclei per myotube and median myotube width in differentiated C2C12 myotubes were increased with HSP70 overexpression. These findings reveal that increased HSP70 expression can promote myoblast fusion, identifying a mechanism for its therapeutic potential to enhance muscle repair after injury.
    Keywords:  C2C12; Fusion; Heat shock protein 70; Myogenesis; Skeletal muscle
  2. Life Sci. 2021 May 17. pii: S0024-3205(21)00614-7. [Epub ahead of print] 119628
      AIM: Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder primarily caused by mutations in COL1A1 or COL1A2, which encode type I collagen. These mutations affect the quantity and/or quality of collagen composition in bones, leading to bone fragility. Currently, there is still a lack of treatment that addresses disease-causing factors due to an insufficient understanding of the pathological mechanisms involved.MAIN METHODS: Induced pluripotent stem cells (iPSCs) were generated from OI patients with glycine substitution mutations in COL1A1 and COL1A2 and developed into mesenchymal stem cells (iPS-MSCs). OI-derived iPS-MSCs underwent in vitro osteogenic induction to study cell growth, osteogenic differentiation capacity, mRNA expression of osteogenic and unfolded protein response (UPR) markers and apoptosis. The effects of 4-phenylbutyric acid (4-PBA) were examined after treatment of OI iPS-MSCs during osteogenesis.
    KEY FINDINGS: OI-derived iPS-MSCs exhibited decreased cell growth and impaired osteogenic differentiation and collagen expression. Expression of UPR genes was increased, which led to an increase in apoptotic cell death. 4-PBA treatment decreased apoptotic cells and reduced expression of UPR genes, including HSPA5, XBP1, ATF4, DDIT3, and ATF6. Osteogenic phenotypes, including RUNX2, SPP1, BGLAP, and IBPS expression, as well as calcium mineralization, were also improved.
    SIGNIFICANCE: MSCs differentiated from disease-specific iPSCs have utility as a disease model for identifying disease-specific treatments. In addition, the ER stress-associated UPR could be a pathogenic mechanism associated with OI. Treatment with 4-PBA alleviated OI pathogenesis by attenuating UPR markers and apoptotic cell death.
    Keywords:  4-Phenylbutyric acid; Apoptosis; Induced pluripotent stem cells; Osteogenesis imperfecta; Unfolded protein response
  3. Theranostics. 2021 ;11(13): 6278-6292
      Background: Ovarian cancer is a fatal gynecologic malignancy that is found worldwide and exhibits an insidious onset and a lack of early warning symptoms. Despite ongoing studies, the mechanistic basis of the aggressive phenotypes of ovarian cancer remains unclear. Lysine acetyltransferase 6A (KAT6A) is a MYST-type histone acetyltransferase (HAT) enzyme identified as an oncogene in breast cancer, glioblastoma and leukemia. However, the specific functions of KAT6A in ovarian cancer remain unclear. Methods: Immunohistochemistry (IHC) staining and western blotting were performed to characterize KAT6A protein expression in ovarian cancer tissues and cell lines. The biological functions of KAT6A in ovarian cancer were evaluated by cell proliferation, wound healing and transwell invasion assays in vitro. Tumorigenesis and metastasis assays were performed in nude mice to detect the role of KAT6A in vivo. Mass spectrometry and immunoprecipitation assays were performed to detect the KAT6A-COP1 interaction. An in vivo ubiquitination assay was performed to determine the regulation of β-catenin by KAT6A. Results: In the present study, we revealed that KAT6A expression is upregulated in ovarian cancer and is associated with patient overall survival. Downregulation of KAT6A markedly inhibited the proliferation and migration abilities of ovarian cancer cells in vivo and in vitro. Additionally, the inhibition of KAT6A induced apoptosis and enhanced the sensitivity of ovarian cancer cells to cisplatin. Furthermore, KAT6A bound to and acetylated COP1 at K294. The acetylation of COP1 impaired COP1 function as an E3 ubiquitin ligase and led to the accumulation and enhanced activity of β-catenin. Conclusions: Our findings suggest that the KAT6A/COP1/β-catenin signaling axis plays a critical role in ovarian cancer progression and that targeting the KAT6A/COP1/β-catenin signaling axis could be a novel strategy for treating ovarian cancer.
    Keywords:  COP1; KAT6A; acetylation; ovarian cancer; β-catenin
  4. Front Aging Neurosci. 2021 ;13 639318
      Alzheimer disease (AD) is an aging-related disorder linked to endoplasmic reticulum (ER) stress. The main pathologic feature of AD is the presence of extracellular senile plaques and intraneuronal neurofibrillary tangles (NFTs) in the brain. In neurodegenerative diseases, the unfolded protein response (UPR) induced by ER stress ensures cell survival. Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against ER stress and has been implicated in the pathogenesis of AD. MANF is expressed in neurons of the brain and spinal cord. However, there have been no investigations on MANF expression in the brain of AD patients. This was addressed in the present study by immunohistochemistry, western blotting, and quantitative analyses of postmortem brain specimens. We examined the localization and expression levels of MANF in the inferior temporal gyrus of the cortex (ITGC) in AD patients (n = 5), preclinical (pre-)AD patients (n = 5), and age-matched non-dementia controls (n = 5) by double immunofluorescence labeling with antibodies against the neuron-specific nuclear protein neuronal nuclei (NeuN), ER chaperone protein 78-kDa glucose-regulated protein (GRP78), and MANF. The results showed that MANF was mainly expressed in neurons of the ITGC in all 3 groups; However, the number of MANF-positive neurons was significantly higher in pre-AD (Braak stage III/IV) and AD (Braak stage V/VI) patients than that in the control group. Thus, MANF is overexpressed in AD and pre-AD, suggesting that it can serve as a diagnostic marker for early stage disease.
    Keywords:  Alzheimer disease; MANF; cerebral cortex; endoplasmic reticulum stress; hyperphosphorylated tau; senile plaque
  5. Stem Cell Res Ther. 2021 May 17. 12(1): 290
      OBJECTIVES: Acute lung injury (ALI) remains a common cause of morbidity and mortality worldwide, and to date, there is no effective treatment for ALI. Previous studies have revealed that topical administration of mesenchymal stem cells (MSCs) can attenuate the pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance the survival and function of cells. The present study aimed to assess whether HS-pretreated MSCs could enhance immunomodulation and recovery from ALI.MATERIALS AND METHODS: HS pretreatment was performed at 42 °C for 1 h, and changes in biological characteristics and secretion functions were detected. In an in vivo mouse model of ALI, we intranasally administered pretreated umbilical cord-derived MSCs (UC-MSCs), confirmed their therapeutic effects, and detected the phenotypes of the macrophages in bronchoalveolar lavage fluid (BALF). To elucidate the underlying mechanisms, we cocultured pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in the macrophages were assessed.
    RESULTS: The data showed that UC-MSCs did not exhibit significant changes in viability or biological characteristics after HS pretreatment. The administration of HS-pretreated UC-MSCs to the ALI model improved the pathological changes and lung damage-related indexes, reduced the proinflammatory cytokine levels, and modulated the M1/M2 macrophage balance. Mechanistically, both the in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs, which negatively modulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in alveolar macrophages. These effects were partially reversed by knocking down HSP70 expression.
    CONCLUSION: HS pretreatment can enhance the beneficial effects of UC-MSCs in inhibiting NLRP3 inflammasome activation in macrophages during ALI. The mechanism may be related to the upregulated expression of HSP70.
    Keywords:  Acute lung injury; Heat shock; Macrophage; NLRP3 inflammasome; Umbilical cord-derived mesenchymal stem cells
  6. J Cell Sci. 2020 Jan 01. pii: jcs.240622. [Epub ahead of print]
      Foot-and-mouth disease virus (FMDV) is a picornavirus that causes contagious acute infection in cloven-hoofed animals. FMDV replication associated viral protein expression induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR), in turn inducing autophagy to restore cellular homeostasis. We observed that inhibition of BiP, a master regulator of ER stress and UPR, decreased FMDV infection confirming their involvement. Further, we show that the FMDV infection induces UPR mainly through PKR-like ER kinase (PERK)-mediated pathway. Knockdown of PERK and chemical inhibition of PERK activation resulted in decreased expression of FMDV proteins along with the reduction of autophagy marker protein LC3B-II. There are conflicting reports on the role of autophagy in FMDV multiplication. Our study systematically demonstrates that during FMDV infection, PERK mediated UPR stimulated an increased level of endogenous LC3B-II and turnover of SQSTM1, thus confirming the activation of functional autophagy. Modulation of UPR and autophagy by pharmacological and genetic approaches resulted in reduced viral progeny, by enhancing antiviral interferon response. Taken together, this study underscores the prospect of exploring the PERK mediated autophagy as an antiviral target.
    Keywords:  Autophagy; Foot-and-mouth disease virus; Interferon; LC3; P-eIF2α; PERK; Unfolded protein response
  7. Cell Signal. 2021 May 17. pii: S0898-6568(21)00136-4. [Epub ahead of print] 110047
      The WNT (Wingless and Int-1) proteins play a role in stem cell development and cell differentiation. Mutations in the WNT proteins lead to the development of various tumours, including gastric tumours. Porcupine (PORCN) is a palmitoyltransferase and Wntless (WLS) is a chaperone protein that modify and fold the WNT proteins respectively and are involved in their proper secretion and binding to the frizzled (FZD) receptor and the lipoprotein receptor-related protein 5 or 6 (LRP5/6). We investigated how modifications of PORCN and WLS result in changes in WNT expression and secretion from cells under stress conditions that occur in the tumour microenvironment (hypoxia, oxidative stress, endoplasmic reticulum (ER) stress). In the present study, we found the mRNA expression of both PORCN and WLS were significantly increased with treatments inducing oxidative stress (antimycin A) and proteasome inhibition (MG-132), in human colon cancer (HCT116) and human intestinal epithelial cell-6 (HIEC-6) cells. Treatment with ER stressors thapsigargin, tunicamycin, and dithiolthreitol significantly increased PORCN gene expression, while treatment with thapsigargin and dithiolthreitol increased WLS gene expression. The expression of PORCN and WLS proteins increased with hypoxia and ER stressor treatments in both HCT116 and HIEC-6 cells. All stressors used in this study increased beta-catenin (β-catenin) expression in HCT116 cells. Our results suggest that these stressors alter PORCN, WLS and β-catenin expression and function which may, in turn, alter WNT secretion. Silencing the expression of PORCN and WLS with siRNA expression reduced the expression of WLS and WNT3A in HCT116 cells. The possibility exists that PORCN specifically may be involved in a novel signaling pathway, independent of its palmitoylation of the WNT proteins and its role in their secretion, that is rate-limiting for cancer cell growth and tumorigenesis, within the tumour microenvironment.
    Keywords:  Endoplasmic reticulum (ER); Hypoxia; Oxidative stress; Porcupine; Stress; Wnt; Wntless
  8. J Cell Sci. 2020 Jan 01. pii: jcs.243709. [Epub ahead of print]
      Protein aggregates that result in inclusions formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells. To address this, we generated a neuroblastoma cell line that expresses a fluorescent reporter protein under conditions of heat shock transcription factor 1-mediated HSR induction. We show that the HSR is not induced by exogenous treatment with aggregated forms of recombinant α-synuclein or the G93A mutant of superoxide dismutase-1 (SOD1G93A) nor intracellular expression of SOD1G93A or a pathogenic form of polyQ-expanded huntingtin (Htt72Q). These results suggest that pathogenic proteins evade detection or impair induction of the HSR in neuronal cells. A failure of protein aggregation to induce an HSR may contribute to the development of inclusion pathology in neurodegenerative diseases.
    Keywords:  HSF1; Heat shock response; Inclusions; Neurodegenerative disorders; Protein aggregation
  9. Eur J Pharmacol. 2021 Apr 30. pii: S0014-2999(21)00291-0. [Epub ahead of print]904 174138
      Neuroblastoma is the most common solid malignant tumor in infants and young children. Its origin is the incompletely committed precursor cells from the autonomic nervous system. Neuroblastoma cells are multipotent cells with a high potency of differentiation into the neural cell types. Neural differentiation leads to the treatment of neuroblastoma by halting the cell and tumor growth and consequently its expansion. Caspases are a family of proteins involved in apoptosis and differentiation. The present study aimed to investigate the potential role of caspase-9 activation on the differentiation of the human neuroblastoma SH-SY5Y cells. Here we investigated the caspase-9 and 3/7 activity during 1,25-dihydroxycholecalciferol (D3)-mediated differentiation of SH-SY5Y cells and took advantage of the inducible caspase-9 system in putting out the differentiation of the neuroblastoma cells. D3-induced differentiation of the cells could lead to activation of caspase-9 and caspase-3/7, astrocyte-like morphology, and increased expression of Glial fibrillary acidic protein (GFAP). By using the inducible caspase-9 system, we showed differentiation of SH-SY5Y cells to astrocyte-like morphology and increased level of GFAP expression. Furthered studies using a specific caspase-9 inhibitor showed inhibition of differentiation mediated by D3 or caspase-9 to astrocyte-like cells. These results show the potency of caspase-9 to direct differentiation of the human neuroblastoma SH-SY5Y cells into cells showing an astrocyte-like morphology.
    Keywords:  Apoptosis; Astrocyte-like cells; Caspase family; Differentiation; Inducible caspase-9; Neuroblastoma
  10. J Cell Sci. 2020 Jan 01. pii: jcs.248526. [Epub ahead of print]
      Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage inducing transmembrane (FIT) family induces LD formation. Here, we establish a model system to study the role of S. cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Devoid of a functional UPR, muted SCS3 exhibited accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting a UPR-dependent compensatory mechanism. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitination and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.
    Keywords:  Endoplasmic reticulum-associated degradation (ERAD); Lipid droplet; Phospholipid metabolism; Proteostasis; Scs3; Unfolded protein response (UPR)
  11. Proc Natl Acad Sci U S A. 2021 May 25. pii: e2022583118. [Epub ahead of print]118(21):
      Adult organisms must sense and adapt to environmental fluctuations. In high-turnover tissues such as the intestine, these adaptive responses require rapid changes in gene expression that, in turn, likely involve posttranscriptional gene control. However, intestinal-tissue-specific microRNA (miRNA)-mediated regulatory pathways remain unexplored. Here, we report the role of an intestinal-specific miRNA, miR-958, that non-cell autonomously regulates stem cell numbers during tissue homeostasis and regeneration in the Drosophila adult midgut. We identify its downstream target cabut, the Drosophila ortholog of mammalian KLF10/11 transcription factors, which mediates this miR-958 function by promoting paracrine enterocyte-to-stem-cell bone morphogenetic protein (BMP) signaling. We also show that mature miR-958 levels transiently decrease in response to stress and that this decrease is required for proper stem cell expansion during tissue regeneration. In summary, we have identified a posttranscriptional mechanism that modulates BMP signaling activity within Drosophila adult intestinal tissue during both normal homeostasis and tissue regeneration to regulate intestinal stem cell numbers.
    Keywords:  BMP signaling; Drosophila; intestine; microRNA; midgut
  12. J Biol Chem. 2021 May 14. pii: S0021-9258(21)00574-3. [Epub ahead of print] 100781
      The unfolded protein response (UPR) plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum (ER) stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its ER luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this inter-domain helix, we show that distinct substitutions affect oligomerization, kinase activity and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Importantly, an RNase-inactive mutant, L827P, can still dimerize with wild type monomers, but this mutation inactivates the wild type molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.
    Keywords:  IRE1 oligomerization; Kinase RNase interdomain helix; RNase activity; conformational change; differential autophosphorylation
  13. Autophagy. 2021 May 19. 1-22
      Presbycusis is the cumulative effect of aging on hearing. Recent studies have shown that common mitochondrial gene deletions are closely related to deafness caused by degenerative changes in the auditory system, and some of these nuclear factors are proposed to participate in the regulation of mitochondrial function. However, the detailed mechanisms involved in age-related degeneration of the auditory systems have not yet been fully elucidated. In this study, we found that FOXG1 plays an important role in the auditory degeneration process through regulation of macroautophagy/autophagy. Inhibition of FOXG1 decreased the autophagy activity and led to the accumulation of reactive oxygen species and subsequent apoptosis of cochlear hair cells. Recent clinical studies have found that aspirin plays important roles in the prevention and treatment of various diseases by regulating autophagy and mitochondria function. In this study, we found that aspirin increased the expression of FOXG1, which further activated autophagy and reduced the production of reactive oxygen species and inhibited apoptosis, and thus promoted the survival of mimetic aging HCs and HC-like OC-1 cells. This study demonstrates the regulatory function of the FOXG1 transcription factor through the autophagy pathway during hair cell degeneration in presbycusis, and it provides a new molecular approach for the treatment of age-related hearing loss.Abbreviations: AHL: age-related hearing loss; baf: bafilomycin A1; CD: common deletion; D-gal: D-galactose; GO: glucose oxidase; HC: hair cells; mtDNA: mitochondrial DNA; RAP: rapamycin; ROS: reactive oxygen species; TMRE: tetramethylrhodamine, ethyl ester.
    Keywords:  Aging-related hearing loss; FOXG1; ROS; autophagy; hair cell
  14. Front Mol Biosci. 2021 ;8 682967
      The asymmetric life cycle of Caulobacter crescentus has provided a model in which to study how protein quality control (PQC) networks interface with cell cycle and developmental processes, and how the functions of these systems change during exposure to stress. As in most bacteria, the PQC network of Caulobacter contains highly conserved ATP-dependent chaperones and proteases as well as more specialized holdases. During growth in optimal conditions, these systems support a regulated circuit of protein synthesis and degradation that drives cell differentiation and cell cycle progression. When stress conditions threaten the proteome, most components of the Caulobacter proteostasis network are upregulated and switch to survival functions that prevent, revert, and remove protein damage, while simultaneously pausing the cell cycle in order to regain protein homeostasis. The specialized physiology of Caulobacter influences how it copes with proteotoxic stress, such as in the global management of damaged proteins during recovery as well as in cell type-specific stress responses. Our mini-review highlights the discoveries that have been made in how Caulobacter utilizes its PQC network for regulating its life cycle under optimal and proteotoxic stress conditions, and discusses open research questions in this model.
    Keywords:  bacterial development; cell cycle; chaperone; holdase; protease; protein quality control
  15. EMBO J. 2021 May 19. e106183
      Exposure to heat stress triggers a well-defined acute response marked by HSF1-dependent transcriptional upregulation of heat shock proteins. Cells allowed to recover acquire thermotolerance, but this adaptation is poorly understood. By quantitative proteomics, we discovered selective upregulation of HSP70-family chaperone HSPA1 and its co-factors, HSPH1 and DNAJB1, in MCF7 breast cancer cells acquiring thermotolerance. HSPA1 was found to have dual function during heat stress response: (i) During acute stress, it promotes the recruitment of the 26S proteasome to translating ribosomes, thus poising cells for rapid protein degradation and resumption of protein synthesis upon recovery; (ii) during thermotolerance, HSPA1 together with HSPH1 maintains ubiquitylated nascent/newly synthesized proteins in a soluble state required for their efficient proteasomal clearance. Consistently, deletion of HSPH1 impedes thermotolerance and esophageal tumor growth in mice, thus providing a potential explanation for the poor prognosis of digestive tract cancers with high HSPH1 and nominating HSPH1 as a cancer drug target. We propose dual roles of HSPA1 either alone or in complex with HSPH1 and DNAJB1 in promoting quality control of nascent/newly synthesized proteins and cellular thermotolerance.
    Keywords:  co-translational protein quality control; esophageal cancer; heat shock protein 70; stress response; ubiquitin-proteasome system
  16. Nature. 2021 May 19.
      The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.
  17. Front Aging Neurosci. 2021 ;13 638208
      There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer's disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR's contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
    Keywords:  Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; aging; double-stranded RNA-dependent protein kinase; integrated stress response; neurocognitive functions
  18. J Cell Sci. 2020 Jan 01. pii: jcs.244855. [Epub ahead of print]
      Imbalances in endoplasmic reticulum (ER) homeostasis provoke a condition known as ER stress and activate the unfolded protein response (UPR) pathway, an evolutionary conserved cell survival mechanism. Here, we show that mouse myoblasts respond to UPR activation by stimulating glycogenesis and the formation of α-amylase-degradable, glycogen-containing, ER structures. We demonstrate that, the glycogen-binding protein Stbd1 is markedly upregulated through the PERK signalling branch of the UPR pathway and is required for the build-up of glycogen structures in response to ER stress activation. In the absence of ER stress, Stbd1 overexpression is sufficient to induce glycogen clustering but does not stimulate glycogenesis. Glycogen structures induced by ER stress are degraded under conditions of glucose restriction through a process which does not depend on autophagosome-lysosome fusion. Furthermore, we provide evidence that failure to induce glycogen clustering during ER stress is associated with enhanced activation of the apoptotic pathway. Our results reveal a so far unknown response of mouse myoblasts to ER stress and uncover a novel specific function of Stbd1 in this process, which may have physiological implications during myogenic differentiation.
    Keywords:  Apoptosis; ER stress; Glycogen; Glycogen synthase; Glycogenin; UPR
  19. Cell Rep. 2021 May 18. pii: S2211-1247(21)00473-3. [Epub ahead of print]35(7): 109134
      Axonal generation of Alzheimer's disease (AD)-associated amyloid-β (Aβ) plays a key role in AD neuropathology, but the cellular mechanisms involved in its release have remained elusive. We previously reported that palmitoylated APP (palAPP) partitions to lipid rafts where it serves as a preferred substrate for β-secretase. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are cholesterol-rich lipid rafts that are upregulated in AD. Here, we show that downregulating MAM assembly by either RNA silencing or pharmacological modulation of the MAM-resident sigma1 receptor (S1R) leads to attenuated β-secretase cleavage of palAPP. Upregulation of MAMs promotes trafficking of palAPP to the cell surface, β-secretase cleavage, and Aβ generation. We develop a microfluidic device and use it to show that MAM levels alter Aβ generation specifically in neuronal processes and axons, but not in cell bodies. These data suggest therapeutic strategies for reducing axonal release of Aβ and attenuating β-amyloid pathology in AD.
    Keywords:  AD; APP; Alzheimer's disease; MAMs; axonal Abeta; lipid rafts; mitochondria-associated ER membranes; palmitoylation
  20. Arch Toxicol. 2021 May 18.
      Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
    Keywords:  Heat shock protein (HSP); Heat shock response (HSR); Molecular chaperones; Proteostasis; Proteotoxic stress
  21. Brain. 2021 May 21. pii: awab201. [Epub ahead of print]
      Neurodegenerative proteinopathies are characterised by progressive cell loss that is preceded by the mislocalisation and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, alpha-synuclein, Tar DNA binding protein-43, Fused in sarcoma and mutant Huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalised aggregates that characterise the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalisation and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalisation and aggregation of karyopherin alpha and beta proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalisation and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
    Keywords:  karyopherin; neurodegeneration; nucleocytoplasmic transport; phase transition; protein aggregation
  22. Oxid Med Cell Longev. 2021 ;2021 8830880
      The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
  23. Front Cell Infect Microbiol. 2021 ;11 668034
      The ability to sense and adequately respond to variable environmental conditions is central for cellular and organismal homeostasis. Eukaryotic cells are equipped with highly conserved stress-response mechanisms that support cellular function when homeostasis is compromised, promoting survival. Two such mechanisms - the unfolded protein response (UPR) and autophagy - are involved in the cellular response to perturbations in the endoplasmic reticulum, in calcium homeostasis, in cellular energy or redox status. Each of them operates through conserved signaling pathways to promote cellular adaptations that include re-programming transcription of genes and translation of new proteins and degradation of cellular components. In addition to their specific functions, it is becoming increasingly clear that these pathways intersect in many ways in different contexts of cellular stress. Viral infections are a major cause of cellular stress as many cellular functions are coopted to support viral replication. Both UPR and autophagy are induced upon infection with many different viruses with varying outcomes - in some instances controlling infection while in others supporting viral replication and infection. The role of UPR and autophagy in response to coronavirus infection has been a matter of debate in the last decade. It has been suggested that CoV exploit components of autophagy machinery and UPR to generate double-membrane vesicles where it establishes its replicative niche and to control the balance between cell death and survival during infection. Even though the molecular mechanisms are not fully elucidated, it is clear that UPR and autophagy are intimately associated during CoV infections. The current SARS-CoV-2 pandemic has brought renewed interest to this topic as several drugs known to modulate autophagy - including chloroquine, niclosamide, valinomycin, and spermine - were proposed as therapeutic options. Their efficacy is still debatable, highlighting the need to better understand the molecular interactions between CoV, UPR and autophagy.
    Keywords:  autophagy; coronavirus; host-pathogen interaction; integrated stress response; unfolded protein response
  24. Biol Open. 2020 Jan 01. pii: bio.054338. [Epub ahead of print]
      Protein aggregates are the pathogenic hallmarks of many different neurodegenerative diseases and include the accumulation of α-synuclein, the main component of Lewy bodies found in Parkinson's disease. Aggresomes are closely-related, cellular accumulations of misfolded proteins. They develop in a juxtanuclear position, adjacent to the centrosome, the microtubule organizing centre of the cell, and share some protein components. Despite the long-standing observation that aggresomes/Lewy bodies and the centrosome sit side-by-side in the cell, no studies have been done to see whether these protein accumulations impede organelle function. We investigated whether the formation of aggresomes affected key centrosome functions: its ability to organize the microtubule network and to promote cilia formation. We find that when aggresomes are present, neuronal cells are unable to organise their microtubule network. New microtubules are not nucleated and extended, and the cells fail to respond to polarity cues. Since neurons are polarised, ensuring correct localisation of organelles and the effective intracellular transport of neurotransmitter vesicles, loss of centrosome activity could contribute to functional deficits and neuronal cell death in Parkinson's disease. In addition, we provide evidence that many cell types, including dopaminergic neurons, cannot form cilia when aggresomes are present, which would affect their ability to receive extracellular signals.
    Keywords:  Aggresome; Alpha-synuclein; Centrosome; Cilia; Lewy body; Parkinson's disease
  25. J Cell Sci. 2020 Jan 01. pii: jcs.241976. [Epub ahead of print]
      Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is critical for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the critical role of the cytosol in regulating ER redox homeostasis ensuring correct protein folding and facilitating the degradation of misfolded ER proteins.
    Keywords:  Disulfide formation; Endoplasmic reticulum; Protein folding; Thioredoxin pathway