bims-polyam Biomed News
on Polyamines
Issue of 2020‒09‒06
nine papers selected by
Alexander Ivanov
Engelhardt Institute of Molecular Biology


  1. Neuropeptides. 2020 Aug 24. pii: S0143-4179(20)30101-3. [Epub ahead of print] 102083
      Spermidine is a naturally occurring endogenous polyamine synthesized from diamine putrescine. It is a well-known autophagy inducer that maintains cellular and neuronal homeostasis. Healthy brain development and function are dependent on brain polyamine concentration. Polyamines interact with the opioid system, glutamatergic signaling and neuroinflammation in the neuronal and glial compartments. Among the polyamines, spermidine is found highest in the human brain. Age-linked fluctuations in the spermidine levels may possibly contribute to the impairments in neural network and neurogenesis. Exogenously administered spermidine helps in the treatment of brain diseases. Further, current studies highlight the ability of spermidine to promote longevity by inducing autophagy. Still, the causal neuroprotective mechanism of spermidine in neuronal dysfunction remains unidentified. This review aims to summarize various neuroprotective effects of spermidine related to anti-aging/ anti-inflammatory properties and the prevention of neurotoxicity that helps in achieving beneficial effects in age-related neurological disorder. We also expose the signaling cascades modulated by spermidine which might result in therapeutic action. The present review highlights clinical studies along with in-vivo and in-vitro preclinical studies to provide a new dimension for the therapeutic potential of spermidine in neurological disorders.
    Keywords:  Aging; Autophagy; Neurodegeneration; Neurological disorder; Polyamine; Spermidine
    DOI:  https://doi.org/10.1016/j.npep.2020.102083
  2. Nutrients. 2020 Sep 01. pii: E2665. [Epub ahead of print]12(9):
      Tryptophan has a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. However, the mechanism underlying the stimulating actions of tryptophan on hepatic protein synthesis remains unclear. Proteomic and metabolomic analyses were performed to identify candidate proteins and metabolites likely to play a role in the stimulation of protein synthesis by tryptophan. Overnight-fasted rats were orally administered L-tryptophan and then sacrificed 1 or 3 h after administration. Four differentially expressed protein spots were detected in rat liver at 3 h after tryptophan administration, of which one was identified as an ornithine aminotransferase (OAT) precursor. OAT is the main catabolic enzyme for ornithine, and its expression was significantly decreased by tryptophan administration. The concentration of ornithine was increased in the liver at 3 h after tryptophan administration. Ornithine is a precursor for polyamine biosynthesis. Significantly increased concentrations of polyamines were found in the liver at 3 h after administration of tryptophan. Additionally, enhanced hepatic protein synthesis was demonstrated by oral administration of putrescine. We speculate that the increase in ornithine level through suppression of OAT expression by tryptophan administration may lead to accelerated polyamine synthesis, thereby promoting protein synthesis in the liver.
    Keywords:  liver; omics; protein synthesis; rat; tryptophan
    DOI:  https://doi.org/10.3390/nu12092665
  3. Malays J Med Sci. 2020 Jul;27(4): 9-21
      The Bacteroides fragilis (B. fragilis) produce biofilm for colonisation in the intestinal tract can cause a series of inflammatory reactions due to B. fragilis toxin (BFT) which can lead to chronic intestinal inflammation and tissue injury and play a crucial role leading to colorectal cancer (CRC). The enterotoxigenic B. fragilis (ETBF) forms biofilm and produce toxin and play a role in CRC, whereas the non-toxigenic B. fragilis (NTBF) does not produce toxin. The ETBF triggers the expression of cyclooxygenase (COX)-2 that releases PGE2 for inducing inflammation and control cell proliferation. From chronic intestinal inflammation to cancer development, it involves signal transducers and activators of transcription (STAT)3 activation. STAT3 activates by the interaction between epithelial cells and BFT. Thus, regulatory T-cell (Tregs) will activates and reduce interleukin (IL)-2 amount. As the level of IL-2 drops, T-helper (Th17) cells are generated leading to increase in IL-17 levels. IL-17 is implicated in early intestinal inflammation and promotes cancer cell survival and proliferation and consequently triggers IL-6 production that activate STAT3 pathway. Additionally, BFT degrades E-cadherin, hence alteration of signalling pathways can upregulate spermine oxidase leading to cell morphology and promote carcinogenesis and irreversible DNA damage. Patient with familial adenomatous polyposis (FAP) disease displays a high level of tumour load in the colon. This disease is caused by germline mutation of the adenomatous polyposis coli (APC) gene that increases bacterial adherence to the mucosa layer. Mutated-APC gene genotype with ETBF increases the chances of CRC development. Therefore, the colonisation of the ETBF in the intestinal tract depicts tumour aetiology can result in risk of hostility and effect on human health.
    Keywords:  Bacteroides fragilis; Bacteroides fragilis toxin; STAT3 pathway; colon cancer; inflammation
    DOI:  https://doi.org/10.21315/mjms2020.27.4.2
  4. PLoS One. 2020 ;15(9): e0238447
      BACKGROUND: Polyamines are involved in a wide variety of biological processes including a marked effect on the structure and function of DNA. During our study on the interaction of polyamines with DNA, we found that K+ enhanced in vitro gene expression in the presence of polyamine more strongly than Na+. Thus, we sought to clarify the physico-chemical mechanism underlying this marked difference between the effects of K+ and Na+.PRINCIPAL FINDINGS: It was found that K+ enhanced gene expression in the presence of spermidine, SPD(3+), much more strongly than Na+, through in vitro experiments with a Luciferase assay on cell extracts. Single-DNA observation by fluorescence microscopy showed that Na+ prevents the folding transition of DNA into a compact state more strongly than K+. 1H NMR measurement revealed that Na+ inhibits the binding of SPD to DNA more strongly than K+. Thus, SPD binds to DNA more favorably in K+-rich medium than in Na+-rich medium, which leads to favorable conditions for RNA polymerase to access DNA by decreasing the negative charge.
    CONCLUSION AND SIGNIFICANCE: We found that Na+ and K+ exhibit markedly different effects through competitive binding with a cationic polyamine, SPD, to DNA, which causes a large difference in the higher-order structure of genomic DNA. It is concluded that the larger favorable effect of Na+ than K+ on in vitro gene expression observed in this study is well attributable to the significant difference between Na+ and K+ on the competitive binding inducing conformational transition of DNA.
    DOI:  https://doi.org/10.1371/journal.pone.0238447
  5. Sci Rep. 2020 Sep 02. 10(1): 14474
      In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals. The PD patient astrocytes manifest the hallmarks of the disease pathology including increased expression of alpha-synuclein. This has detrimental consequences, resulting in altered metabolism, disturbed Ca2+ homeostasis and increased release of cytokines upon inflammatory stimulation. Furthermore, PD astroglial cells manifest increased levels of polyamines and polyamine precursors while lysophosphatidylethanolamine levels are decreased, both of these changes have been reported also in PD brain. Collectively, these data reveal an important role for astrocytes in PD pathology and highlight the potential of iPSC-derived cells in disease modeling and drug discovery.
    DOI:  https://doi.org/10.1038/s41598-020-71329-8
  6. Microb Genom. 2020 Sep 04.
      The outcome of Leishmania infection is strongly influenced by the host's genetic background. BALB/c mice are susceptible to Leishmania infection, while C57BL/6 mice show discrete resistance. Central to the fate of the infection is the availability of l-arginine and the related metabolic processes in the host and parasite. Depending on l-arginine availability, nitric oxide synthase 2 (NOS2) of the host cell produces nitric oxide (NO) controlling the parasite growth. On the other hand, Leishmania can also use host l-arginine for the production of polyamines through its own arginase activity, thus favouring parasite replication. Considering RNA-seq data, we analysed the dual modulation of host and parasite gene expression of BALB/c or C57BL/6 mouse bone marrow-derived macrophages (BMDMs) after 4 h of infection with Leishmania amazonensis wild-type (La-WT) or L. amazonensis arginase knockout (La-arg-). We identified 12 641 host transcripts and 8282 parasite transcripts by alignment analysis with the respective Mus musculus and L. mexicana genomes. The comparison of BALB/c_La-arg- versus BALB/c_La-WT revealed 233 modulated transcripts, with most related to the immune response and some related to the amino acid transporters and l-arginine metabolism. In contrast, the comparison of C57BL/6_La-arg- vs. C57BL/6_La-WT revealed only 30 modulated transcripts, including some related to the immune response but none related to amino acid transport or l-arginine metabolism. The transcriptome profiles of the intracellular amastigote revealed 94 modulated transcripts in the comparison of La-arg-_BALB/c vs. La-WT_BALB/c and 45 modulated transcripts in the comparison of La-arg-_C57BL/6 vs. La-WT_C57BL/6. Taken together, our data present new insights into the impact of parasite arginase activity on the orchestration of the host gene expression modulation, including in the immune response and amino acid transport and metabolism, mainly in susceptible BALB/c-infected macrophages. Moreover, we show how parasite arginase activity affects parasite gene expression modulation, including amino acid uptake and amastin expression.
    Keywords:  BALB/c; C57BL/6; Leishmania amazonensis; RNA-seq; arginine transport; immune response; macrophage infection
    DOI:  https://doi.org/10.1099/mgen.0.000427
  7. PLoS One. 2020 ;15(8): e0236226
      Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.
    DOI:  https://doi.org/10.1371/journal.pone.0236226
  8. Sci Rep. 2020 Sep 02. 10(1): 14418
      Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
    DOI:  https://doi.org/10.1038/s41598-020-71405-z
  9. Int J Mol Sci. 2020 Aug 30. pii: E6282. [Epub ahead of print]21(17):
      The L-arginine/NO pathway holds promise as a source of potential therapy target and biomarker; yet, its status and utility in esophageal squamous cell carcinoma (ESCC) is unclear. We aimed at quantifying pathway metabolites in sera from patients with ESCC (n = 61) and benign conditions (n = 62) using LC-QTOF-MS and enzyme expression in esophageal tumors and matched noncancerous samples (n = 40) using real-time PCR with reference to ESCC pathology and circulating immune/inflammatory mediators, quantified using Luminex xMAP technology. ESCC was associated with elevated systemic arginine and asymmetric dimethylarginine. Citrulline decreased and arginine bioavailability increased along with increasing ESCC advancement. Compared to adjacent tissue, tumors overexpressed ODC1, NOS2, PRMT1, and PRMT5 but had downregulated ARG1, ARG2, and DDAH1. Except for markedly higher NOS2 and lower ODC1 in tumors from M1 patients, the pathology-associated changes in enzyme expression were subtle and present also in noncancerous tissue. Both the local enzyme expression level and systemic metabolite concentration were related to circulating inflammatory and immune mediators, particularly those associated with eosinophils and those promoting viability and self-renewal of cancer stem cells. Metabolic reprogramming in ESCC manifests itself by the altered L-arginine/NO pathway. Upregulation of PRMTs in addition to NOS2 and ODC1 and the pathway link with stemness-promoting cytokines warrants further investigation.
    Keywords:  arginase (ARG); asymmetric dimethylarginine (ADMA); citrulline; dimethylamine (DMA); dimethylarginine dimethylaminohydrolase (DDAH); nitric oxide synthase (NOS); ornithine; ornithine decarboxylase (ODC); protein arginine N-methyltransferase (PRMT); symmetric dimethylarginine (SDMA)
    DOI:  https://doi.org/10.3390/ijms21176282