bims-polyam Biomed News
on Polyamines
Issue of 2020‒01‒26
five papers selected by
Alexander Ivanov
Engelhardt Institute of Molecular Biology

  1. PLoS Med. 2020 Jan;17(1): e1003012
    Mahajan UV, Varma VR, Griswold ME, Blackshear CT, An Y, Oommen AM, Varma S, Troncoso JC, Pletnikova O, O'Brien R, Hohman TJ, Legido-Quigley C, Thambisetty M.
      BACKGROUND: There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways.METHODS AND FINDINGS: We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators.
    CONCLUSIONS: In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.
  2. Pestic Biochem Physiol. 2020 Feb;pii: S0048-3575(19)30465-1. [Epub ahead of print]163 14-22
    Pires N, Maiale S, Venturino A, Lascano C.
      The organophosphorus pesticides azinphos-methyl (AZM) and chlorpyrifos (CPF) exert their toxic action by inhibition of acetylcholinesterase, but non-target processes such as polyamine metabolism can also be affected. Our objective was to evaluate the effects of different concentrations of AZM (0.5-, 2- and 9 mg L-1) and CPF (0.5- and 1 mg L-1) on polyamine oxidative metabolism along Rhinella arenarum embryonic development and to explore its relationship to oxidative stress. Free and conjugated polyamines were measured by HPLC. The activity of spermine oxidase (SMOX), N1-acetylpolyamine oxidase (PAOX) and diamine oxidase (DAO) were measured through kinetic spectrofluorometry. Free putrescine and spermine were significantly increased in open mouth embryos exposed to AZM. Free polyamine levels were not affected by CPF exposure. In embryos exposed to AZM, DAO was increased in tail bud stage and SMOX was increased in open mouth stage, while embryos exposed to CPF showed an increase of PAOX activity in tail bud stage and a decrease of DAO and SMOX activity in open mouth stage. Polyamine levels and oxidative degradation enzymes respond differently if R. arenarum embryos are exposed to AZM or CPF, despite that both insecticides belong to the same chemical family. The early increase of DAO and PAOX would play a protective role to guarantee the normal progression of embryonic development. The increased production of reactive species might contribute to an oxidative stress situation generated by exposure to the insecticides and to the alteration of the antioxidant defense system. In tail bud stage embryos, PAOX and SMOX were positively correlated to acetylcholinesterase activity and reduced glutathione levels (GSH), and negatively correlated to the antioxidant enzymes catalase (CAT) and glutathione S-transferase (GST). In complete operculum embryos, a negative correlation between antioxidant parameters and polyamine levels and polyamine oxidative metabolism was observed, except for SMOX, which showed a low positive correlation with CAT and GSH and a negative correlation to PAOX and DAO. We suggest the use of DAO and PAOX as biomarkers of exposure to AZM and CPF, respectively, as they respond earlier than the classical biomarker acetylcholinesterase.
    Keywords:  Diamine oxidase; N(1)-acetylpolyamine oxidase; Organophosphorus pesticides; Oxidative stress; Polyamine content; Spermine oxidase
  3. Fish Shellfish Immunol. 2020 Jan 19. pii: S1050-4648(20)30026-7. [Epub ahead of print]
    Clark TC, Tinsley J, Sigholt T, Macqueen DJ, Martin SAM.
      Supplementing the diet with functional ingredients is a key strategy to improve fish performance and health in aquaculture. The amino acids of the urea and nitric oxide (NO) cycles - arginine, ornithine and citrulline - perform crucial roles in the immune response through the generation of NO and the synthesis of polyamine used for tissue repair. We previously found that citrulline supplementation improves and maintains circulating free arginine levels in rainbow trout more effectively than arginine supplementation. Here, to test whether supplementation of urea cycle amino acids modulates the immune response in rainbow trout (Oncorhynchus mykiss), we supplemented a commercial diet with high levels (2% of total diet) of either arginine, ornithine or citrulline during a 7-week feeding trial, before challenging fish with the bacterium Aeromonas salmonicida. We carried out two separate experiments to investigate fish survival and 24 h post-infection to investigate the immediate response of free amino acid levels, and transcriptional changes in genes encoding urea cycle, NO cycle and polyamine synthesis enzymes. There were no differences in percentage fish mortality between diets, however there were numerous highly significant changes in free amino acid levels and gene expression to both dietary supplementation and infection. Out of 26 amino acids detected in blood plasma, 8 were significantly changed by infection and 9 by dietary supplementation of either arginine, ornithine or citrulline. Taurine, glycine and aspartic acid displayed the largest decreases in circulating levels in infected fish, while ornithine and isoleucine were the only amino acids that increased in concentration. We investigated transcriptional responses of the enzymes involved in arginine metabolism in liver and head kidney; transcripts for polyamine synthesis enzymes showed highly significant increases in both tissues across all diets following infection. The paralogous arginase-encoding genes, Arg1a, Arg1b, Arg2a and Arg2b, displayed complex responses across tissues and also due to diet and infection. Overall, these findings improve our understanding of amino acid metabolism following infection and suggests new potential amino acid targets for improving the immune response in salmonids.
    Keywords:  Arginine; Citrulline; Functional amino acids; Health; Ornithine; Polyamine; Salmonids; Urea cycle
  4. iScience. 2020 Jan 24. pii: S2589-0042(19)30553-X. [Epub ahead of print]23(1): 100807
    Li G, Ding H, Yu X, Meng Y, Li J, Guo Q, Zhou H, Shen N.
      Dendritic cells (DCs) function is intimately linked to microenvironment and metabolism. Type I interferons (IFNs) condition dendritic cells to respond to weak self-signals, leading to autoimmunity. However, the metabolic adaption in the process is unclear. Here, we identified spermidine as a critical metabolite impacting the metabolic fitness of DC. First, dynamic metabolome screening indicated that spermidine decreased during IFN priming and following TLR7 ligand stimulation, accompanied by metabolic change from oxidative phosphorylation to glycolysis. Second, spermidine supplement restrained the glycolysis and prevented the overactivation of IFN-α primed DC both in vivo and in vitro. Third, mechanism study uncovered that the activity of FOXO3 adapted to the metabolic change, mediating the anti-inflammatory effect of spermidine. More importantly, addition of spermidine in vivo greatly alleviated the development of psoriasis-like symptom in mice. Thus, our studies revealed metabolic changes boosting DC responses and identified spermidine as a potential therapeutic agent for autoimmune diseases.
    Keywords:  Biological Sciences; Cell Biology; Immunology; Metabolomics
  5. J Vis Exp. 2019 Dec 31.
    Ariyaratne M, Ge L, Morris PF.
      Several methods have been developed to functionally characterize novel membrane transporters. Polyamines are ubiquitous in all organisms, but polyamine exchangers in plants have not been identified. Here, we outline a method to characterize polyamine antiporters using membrane vesicles generated from the lysis of Escherichia coli cells heterologously expressing a plant antiporter. First, we heterologously expressed AtBAT1 in an E. coli strain deficient in polyamine and arginine exchange transporters. Vesicles were produced using a French press, purified by ultracentrifugation and utilized in a membrane filtration assay of labeled substrates to demonstrate the substrate specificity of the transporter. These assays demonstrated that AtBAT1 is a proton-mediated transporter of arginine, γ-aminobutyric acid (GABA), putrescine and spermidine. The mutant strain that was developed for the assay of AtBAT1 may be useful for the functional analysis of other families of plant and animal polyamine exchangers. We also hypothesize that this approach can be used to characterize many other types of antiporters, as long as these proteins can be expressed in the bacterial cell membrane. E. coli is a good system for the characterization of novel transporters, since there are multiple methods that can be employed to mutagenize native transporters.