bims-plasge Biomed News
on Plastid genes
Issue of 2020‒08‒16
three papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences


  1. Front Genet. 2020 ;11 748
      Loss of pod shattering is one of the most important domestication-related traits in legume crops. The non-shattering phenotypes have been achieved either by disturbed formation of abscission layer between the valves, or by loss of helical tension in sclerenchyma of endocarp, that split open the pods to disperse the seeds. During domestication, azuki bean (Vigna angularis) and yard-long bean (Vigna unguiculata cv-gr. Sesquipedalis) have reduced or lost the sclerenchyma and thus the shattering behavior of seed pods. Here we performed fine-mapping with backcrossed populations and narrowed the candidate genomic region down to 4 kbp in azuki bean and 13 kbp in yard-long bean. Among the genes located in these regions, we found MYB26 genes encoded truncated proteins in azuki bean, yard-long bean, and even cowpea. As such, our findings indicate that independent domestication on the two legumes has selected the same locus for the same traits. We also argue that MYB26 could be a target gene for improving shattering phenotype in other legumes, such as soybean.
    Keywords:  MYB26; azuki bean; cowpea; domestication; legume; pod shattering; secondary wall thickening; yard-long bean
    DOI:  https://doi.org/10.3389/fgene.2020.00748
  2. Plant Sci. 2020 Sep;pii: S0168-9452(20)30172-2. [Epub ahead of print]298 110566
      Pisum fulvum is an annual legume native to Syria, Lebanon, Israel and Jordan. In certain locations, P. fulvum individuals were documented to display a reproductive dimorphism - amphicarpy, with both above and below ground flowers and pods. Herein we aimed to study the possible role of soil texture on amphicarpy in P. fulvum, to investigate the possible bio-climatic associations of P. fulvum amphicarpy and to identify genetic markers associated with this phenotype. A set of 127 germplasm accessions sampled across the Israeli distribution range of the species was phenotyped in two common garden nurseries. Land use and bioclimatic data were used to delineate the eco-geographic clustering of accession's sampling sites. Single nucleotide polymorphism (SNP) markers were employed in genome-wide association study to identify associated loci. Amphicarpy was subject to strong experimental site x genotype interaction with higher phenotypic expression in fine textured soil relative to sandy loam. Amphicarpy was more prevalent among accessions sampled in eastern Judea and Samaria and was weakly associated with early phenology and relatively modest above ground biomass production. Twelve SNP markers were significantly associated with amphicarpy, each explaining between 8 and 12 % of the phenotypic variation. In P. fulvum amphicarpy seems to be a polygenetic trait controlled by an array of genes that is likely to be affected by environmental stimuli. The probable selective advantage of the association between amphicarpy and early flowering is in line with its relative prevalence in drought prone territories subject to heavy grazing.
    Keywords:  Crop wild relative; Edaphic effect; G by E interaction; Genetic control; Genome-wide association study; Pisum fulvum
    DOI:  https://doi.org/10.1016/j.plantsci.2020.110566
  3. Biochim Biophys Acta Mol Cell Res. 2020 Aug 05. pii: S0167-4889(20)30174-9. [Epub ahead of print] 118816
      The biogenesis of membrane-bound electron transport chains requires membrane translocation pathways for folded proteins carrying complex cofactors, like the Rieske Fe/S proteins. Two independent systems were developed during evolution, namely the Twin-arginine translocation (Tat) pathway, which is present in bacteria and chloroplasts, and the Bcs1 pathway found in mitochondria of yeast and mammals. Mitochondria of plants carry a Tat-like pathway which was hypothesized to operate with only two subunits, a TatB-like protein and a TatC homolog (OrfX), but lacking TatA. Here we show that the nuclearly encoded TatA from pea has dual targeting properties, i.e., it can be imported into both, chloroplasts and mitochondria. Dual targeting of TatA was observed with in organello experiments employing chloroplasts and mitochondria isolated from pea as well as after transient expression of suitable reporter constructs in leaf tissue from pea and Nicotiana benthamiana. The extent of transport of these constructs into mitochondria of transiently transformed leaf cells was relatively low, causing a demand for highly sensitive methods to be detected, like the sasplitGFP approach. Yet, the dual import of TatA into mitochondria and chloroplasts observed here points to a common mechanism of Tat transport for folded proteins within both endosymbiotic organelles in plants.
    Keywords:  Dual targeting; Twin-arginine translocation (Tat) pathway; chloroplasts; folded proteins; membrane transport; mitochondria
    DOI:  https://doi.org/10.1016/j.bbamcr.2020.118816