bims-plasge Biomed News
on Plastid genes
Issue of 2019‒11‒03
two papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences


  1. Theor Appl Genet. 2019 Nov 01.
    Tan H, Wang X, Fei Z, Li H, Tadmor Y, Mazourek M, Li L.
      KEY MESSAGE: Gr5.1 is the major locus for cauliflower green curd color and mapped to an interval of 236 Kbp with four most likely candidate genes. Cauliflower with colored curd enhances not only the visual appeal but also the nutritional value of the crop. Green cauliflower results from ectopic development of chloroplasts in the normal white curd. However, the underlying genetic basis is unknown. In this study, we employed QTL-seq analysis to identify the loci that were associated with green curd phenotype in cauliflower. A F2 population was generated following a cross between a white curd (Stovepipe) and a green curd (ACX800) cauliflower plants. By whole-genome resequencing and SNP analysis of green and white F2 bulks, two QTLs were detected on chromosomes 5 (Gr5.1) and 7 (Gr7.1). Validation by traditional genetic mapping with CAPS markers suggested that Gr5.1 represented a major QTL, whereas Gr7.1 had a minor effect. Subsequent high-resolution mapping of Gr5.1 in the second large F2 population with additional CAPS markers narrowed down the target region to a genetic and physical distance of 0.3 cM and 236 Kbp, respectively. This region contained 35 genes with four of them representing the best candidates for the green curd phenotype in cauliflower. They are LOC106295953, LOC106343833, LOC106345143, and LOC106295954, which encode UMP kinase, DEAD-box RNA helicase 51-like, glutathione S-transferase T3-like, and protein MKS1, respectively. These findings lay a solid foundation for the isolation of the Gr gene and provide a potential for marker-assisted selection of the green curd trait in cauliflower breeding. The eventual isolation of Gr will also facilitate better understanding of chloroplast biogenesis and development in plants.
    DOI:  https://doi.org/10.1007/s00122-019-03466-2
  2. J Exp Bot. 2019 Oct 31. pii: erz436. [Epub ahead of print]
    Lee SK, Kim H, Cho JI, Nguyen CD, Moon S, Park JE, Park HR, Huh JH, Jung KH, Guiderdoni E, Jeon JS.
      There is little known about the function of rice hexokinases (HXKs) in planta. We characterized hxk5-1, a Tos17 mutant of OsHXK5 that is up-regulated in maturing pollen, a stage when starch accumulates. Progeny analysis of self-pollinated heterozygotes of hxk5-1 and reciprocal crosses between the wild-type and heterozygotes revealed that loss of HXK5 causes male sterility. Homozygous hxk5-1, produced via anther culture, and additional homozygous hxk5-2, hxk5-3 and hxk5-4 lines created by CRISPR/Cas9 confirmed the male-sterile phenotype. In vitro pollen germination ability and in vivo pollen tube growth rate were significantly reduced in the hxk5 mutant pollen. Biochemical analysis of anthers with the mutant pollen revealed significantly reduced hexokinase activity and starch content, although they were sufficient to produce some viable seed. However, the mutant pollen was unable to compete successfully against wild-type pollen. Expression of the catalytically inactive OsHXK5-G113D did not rescue the hxk5 male-sterile phenotype, indicating that its catalytic function was responsible for pollen fertility, rather than its role in sugar sensing and signaling. Our results demonstrate that OsHXK5 contributes to a large portion of the hexokinase activity necessary for the starch utilization pathway during pollen germination and tube growth, as well as for starch biosynthesis during pollen maturation.
    Keywords:   Oryza sativa ; Hexokinase; male sterility; pollen germination; pollen tube growth; starch
    DOI:  https://doi.org/10.1093/jxb/erz436